Recent developments in the therapeutic potential of cannabinoids.

Abstract

“OBJECTIVE:

To examine the recent evidence that marijuana and other cannabinoids have therapeutic potential.

METHODS:

Literature published since 1997 was searched using the following terms: cannabinoid, marijuana, THC, analgesia, cachexia, glaucoma, movement, multiple sclerosis, neurological, pain, Parkinson, trial, vomiting. Qualifying clinical studies were randomized, double-blind, and placebo-controlled. Selected open-label studies and surveys are also discussed.

RESULTS:

A total of 15 independent, qualifying clinical trials were identified, of which only three had more than 100 patients each. Two large trials found that cannabinoids were significantly better than placebo in managing spasticity in multiple sclerosis. Patients self-reported greater sense of motor improvement in multiple sclerosis than could be confirmed objectively. In smaller qualifying trials, cannabinoids produced significant objective improvement of tics in Tourette’s disease, and neuropathic pain. A new, non-psychotropic cannabinoid also has analgesic activity in neuropathic pain. No significant improvement was found in levodopa-induced dyskinesia in Parkinson’s Disease or post-operative pain. No difference from active placebo was found for management of cachexia in a large trial. Some immune system parameters changed in HIV-1 and multiple sclerosis patients treated with cannabinoids, but the clinical significance is unknown. Quality of life assessments were made in only three of 15 qualifying clinical trials.

CONCLUSION:

Cannabinoids may be useful for conditions that currently lack effective treatment, such as spasticity, tics and neuropathic pain. New delivery systems for cannabinoids and cannabis-based medicinal extracts, as well as new cannabinoid derivatives expand the options for cannabinoid therapy. More well-controlled, large clinical tests are needed, especially with active placebo.”

http://www.ncbi.nlm.nih.gov/pubmed/15895873

Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

“Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions).

The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol.

Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol,

the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/19729208

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

Targeting the endocannabinoid system: to enhance or reduce?

Abstract

“As our understanding of the endocannabinoids improves, so does the awareness of their complexity. During pathological states, the levels of these mediators in tissues change, and their effects vary from those of protective endogenous compounds to those of dysregulated signals. These observations led to the discovery of compounds that either prolong the lifespan of endocannabinoids or tone down their action for the potential future treatment of pain, affective and neurodegenerative disorders, gastrointestinal inflammation, obesity and metabolic dysfunctions, cardiovascular conditions and liver diseases. When moving to the clinic, however, the pleiotropic nature of endocannabinoid functions will require careful judgement in the choice of patients and stage of the disorder for treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/18446159

Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk.

Abstract

“Introduction: Obesity and related cardiometabolic derangements are spiraling global health problems urgently in need of safe, effective and durable pharmacotherapy. Areas covered: As an orexigenic and anabolic biosignaling network, the endocannabinoid system interacts with other information-transducing pathways to help ensure metabolic homeostasis. Hyperphagia stimulates reinforcing neuronal circuits favoring energy intake and conservation, inviting overweight/obesity and cardiometabolic risk factors (‘metabolic syndrome’). Associated increases in cannabinoid 1 G protein-coupled receptor (CB1R) activity/expression further exacerbate food consumption and the metabolic shift toward fat production and accumulation. The role of CB1R activity in hyperphagia and weight gain spurred the development of rimonabant (SR141716; Acomplia), the first-in-class CB1R antagonist/inverse agonist weight-loss drug. Rimonabant and similar CB1R inverse agonists also exert pleiotropic actions in addition to weight-loss effects that help correct obesity-related metabolic derangements and reduce cardiovascular risk in humans. The medicinal utility of these agents was crippled by clinically significant central and peripheral adverse effects that appear to reflect CB1R inverse agonists as a class. Consequently, increased attention is being given to CB1R neutral antagonists, CB1R blockers with intrinsically weak, if any, functional potency to elicit the negative-efficacy responses associated with inverse agonists. Laboratory studies demonstrate that CB1R neutral antagonists – whether readily accessible to the central nervous system or not (i.e., ‘periphero-neutral’ antagonists) – retain the salient therapeutic effects of CB1R inverse agonists on hyperphagia, weight-gain, and obesity-driven metabolic abnormalities with the distinct advantage of being associated with significantly less preclinical adverse events than are conventional CB1R inverse agonists such as rimonabant. Expert opinion: CB1R (periphero-)neutral antagonists merit continued analysis of their molecular pharmacology and evaluation of their therapeutic significance and translational potential as new-generation medicines for obesity-related derangements, including nonalcoholic fatty liver disease and type 2 diabetes, if not obesity itself.”

http://www.ncbi.nlm.nih.gov/pubmed/22646861

Endocannabinoid system: An overview of its potential in current medical practice.

Abstract

“The endocannabinoid system (ECS) is a lipid signalling system, comprising of the endogenous cannabis-like ligands (endocannabinoids) anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which derive from arachidonic acid. These bind to a family of G-protein-coupled receptors, called CB1 and CB2. The cannabinoid receptor 1 (CB1R) is distributed in brain areas associated with motor control, emotional responses, motivated behaviour and energy homeostasis. In the periphery, the same receptor is expressed in the adipose tissue, pancreas, liver, GI tract, skeletal muscles, heart and the reproduction system. The CB2R is mainly expressed in the immune system regulating its functions. Endocannabinoids are synthesized and released upon demand in a receptor-dependent way. They act as retrograde signalling messengers in GABAergic and glutamatergic synapses and as modulators of postsynaptic transmission, interacting with other neurotransmitters. Endocannabinoids are transported into cells by a specific uptake system and degraded by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The ECS is involved in various pathophysiological conditions in central and peripheral tissues. It is implicated in the hormonal regulation of food intake, cardiovascular, gastrointestinal, immune, behavioral, antiproliferative and mammalian reproduction functions. Recent advances have correlated the ECS with drug addiction and alcoholism. The growing number of preclinical and clinical data on ECS modulators is bound to result in novel therapeutic approaches for a number of diseases currently treated inadequately. The ECS dysregulation has been correlated to obesity and metabolic syndrome pathogenesis. Rimonabant is the first CB1 blocker launched to treat cardiometabolic risk factors in obese and overweight patients. Phase III clinical trials showed the drug’s ability to regulate intra-abdominal fat tissue levels, lipidemic, glycemic and inflammatory parameters. However, safety conerns have led to its withrawal. The role of endocannabinoids in mammalian reproduction is an emerging research area given their implication in fertilization, preimplantation embryo and spermatogenesis. The relevant preclinical data on endocannabinoid signalling open up new perspectives as a target to improve infertility and reproductive health in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/19675519