Cannabinoids, Endocannabinoids and Cancer

Logo of nihpa

“The endocannabinoid system consists of an array of endogenously produced bioactive lipids that activate cannabinoid receptors. Although the primary focus of endocannabinoid biology has been on neurological and psychiatric effects, recent work has revealed several important interactions between the endocannabinoid system and cancer. Several different types of cancer have abnormal regulation of the endocannabinoid system that contributes to cancer progression and correlates to clinical outcomes.

Modulation of the endocannabinoid system by pharmacological agents in various cancer types reveals that it can mediate antiproliferative and apoptotic effects by both cannabinoid receptor-dependent and -independent pathways. Selective agonists and antagonists of the cannabinoid receptors, inhibitors of endocannabinoid hydrolysis, and cannabinoid analogs have been utilized to probe the pathways involved in the effects of the endocannabinoid system on cancer cell apoptosis, proliferation, migration, adhesion, and invasion. The antiproliferative and apoptotic effects produced by some of these pharmacological probes reveal that the endocannabinoid system is a promising new target for the development of novel chemotherapeutics to treat cancer.”

Although there is a strong set of data in vitro, in cellular model systems, and in mouse model systems, there is a dearth of clinical data on the effects of cannabinoids in the treatment of cancer in humans. This fact is quite surprising considering the large library of compounds that have been developed and used to study the effects of cannabinoids on cancer in model systems.

Despite the lack of preclinical and clinical data, there is a strong agreement that pharmacological targeting of the endocannabinoid system is emerging as one of the most promising new methods for reducing the progression of cancer. In particular, combination therapy utilizing both traditional chemotherapeutics and molecules targeting the endocannabinoid system may be an excellent next generation treatment for cancer.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366283/

The endocannabinoid system in cancer-potential therapeutic target?

Cover image

“Endogenous arachidonic acid metabolites with properties similar to compounds of Cannabis sativa Linnaeus, the so-called endocannabinoids, have effects on various types of cancer. Although endocannabinoids and synthetic cannabinoids may have pro-proliferative effects, predominantly inhibitory effects on tumor growth, angiogenesis, migration and metastasis have been described. Remarkably, these effects may be selective for the cancer cells, while normal cells and tissues are spared. Such apparent tumor cell selectivity makes the endocannabinoid system an attractive potential target for cancer therapy. In this review we discuss various means by which the endocannabinoid system may be targeted in cancer and the current knowledge considering the regulation of the endocannabinoid system in malignancy.”  http://www.ncbi.nlm.nih.gov/pubmed/18249558

http://www.sciencedirect.com/science/article/pii/S1044579X07001058

Endocannabinoids as emerging suppressors of angiogenesis and tumor invasion (review).

Journal Cover

“The medicinal properties of extracts from the hemp plant Cannabis sativa have been known for centuries but only in the 90s membrane receptors for the Cannabis major principle were discovered in mammalian cells. Later on the endogenous ligands for the cannabinoid receptors were identified and the term ‘endocannabinoid system’ was coined to indicate the complex signaling system of cannabinoid receptors, endogenous ligands and the enzymes responsible for their biosynthesis and inactivation.

The ‘endocannabinoid system’ is involved in a broad range of functions and in a growing number of pathological conditions.

There is increasing evidence that endocannabinoids are able to inhibit cancer cell growth in culture as well as in animal models.

Most work has focused on the role of endocannabinoids in regulating tumor cell growth and apoptosis and ongoing research is addressed to further dissect the precise mechanisms of cannabinoid antitumor action. However, endocannabinoids are now emerging as suppressors of angiogenesis and tumor spreading since they have been reported to inhibit angiogenesis, cell migration and metastasis in different types of cancer, pointing to a potential role of the endocannabinoid system as a target for a therapeutic approach of such malignant diseases.

The potential use of cannabinoids to retard tumor growth and spreading is even more appealing considering that they show a good safety profile, regarding toxicity, and are already used in cancer patients as palliatives to stimulate appetite and to prevent devastating effects such as nausea, vomiting and pain.”  http://www.ncbi.nlm.nih.gov/pubmed/17342320

https://www.spandidos-publications.com/or/17/4/813

Delta9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo – Harvard Medical School

“Delta(9)-Tetrahydrocannabinol (THC) is the primary cannabinoid of marijuana and has been shown to either potentiate or inhibit tumor growth, depending on the type of cancer and its pathogenesis. Little is known about the activity of cannabinoids like THC on epidermal growth factor receptor-overexpressing lung cancers, which are often highly aggressive and resistant to chemotherapy. In this study, we characterized the effects of THC on the EGF-induced growth and metastasis of human non-small cell lung cancer using the cell lines A549 and SW-1573 as in vitro models. We found that these cells express the cannabinoid receptors CB(1) and CB(2), known targets for THC action, and that THC inhibited EGF-induced growth, chemotaxis and chemoinvasion. Moreover, signaling studies indicated that THC may act by inhibiting the EGF-induced phosphorylation of ERK1/2, JNK1/2 and AKT. THC also induced the phosphorylation of focal adhesion kinase at tyrosine 397. Additionally, in in vivo studies in severe combined immunodeficient mice, there was significant inhibition of the subcutaneous tumor growth and lung metastasis of A549 cells in THC-treated animals as compared to vehicle-treated controls. Tumor samples from THC-treated animals revealed antiproliferative and antiangiogenic effects of THC. Our study suggests that cannabinoids like THC should be explored as novel therapeutic molecules in controlling the growth and metastasis of certain lung cancers.”

http://www.ncbi.nlm.nih.gov/pubmed/17621270

Cannabinoid-associated cell death mechanisms in tumor models

“In recent years, cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to findings that they can affect the viability and invasiveness of a variety of different cancer cells. Moreover, in addition to their inhibitory effects on tumor growth and migration, angiogenesis and metastasis, the ability of these compounds to induce different pathways of cell death has been highlighted. Here, we review the most recent results generating interest in the field of death mechanisms induced by cannabinoids in cancer cells. In particular, we analyze the pathways triggered by cannabinoids to induce apoptosis or autophagy and investigate the interplay between the two processes. Overall, the results reported here suggest that the exploration of molecular mechanisms induced by cannabinoids in cancer cells can contribute to the development of safe and effective treatments in cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/22614735

Marijuana compound could stop aggressive cancer metastasis

“A compound found in cannabis could halt the spread of many forms of aggressive cancer, scientists have claimed.

Researchers found that the compound, called cannabidiol, had the ability to “switch off” the gene responsible for metastasis in an aggressive form of breast cancer, the Daily Mail reported.

Importantly, this substance does not produce the psychoactive properties of the cannabis plant.

The team from the California Pacific Medical Center, in San Francisco, first spotted its potential five years ago, after it stopped the proliferation of human breast cancer cells in the lab, the report said.

They discovered that the compound had turned off the overexpression of ID-1, stopping them from travelling to distant tissues.

Other potentially treatable cancers are forms of leukaemia, lung, ovarian and brain cancers, which also have high levels of ID-1.”

http://in.news.yahoo.com/marijuana-compound-could-stop-aggressive-cancer-metastasis-064950912.html

Cannabinoids for Cancer Treatment: Progress and Promise

“Cannabinoids are a class of pharmacologic compounds that offer potential applications as antitumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival. In particular, emerging evidence suggests that agonists of cannabinoid receptors expressed by tumor cells may offer a novel strategy to treat cancer. Here, we review recent work that raises interest in the development and exploration of potent, nontoxic, and nonhabit forming cannabinoids for cancer therapy.

 there is overwhelming evidence to suggest that cannabinoids can be explored as chemotherapeutic agents for the treatment of cancer.”

 http://cancerres.aacrjournals.org/content/68/2/339.long

The endocannabinoid system in the cancer therapy: an overview.

“The endocannabinoid system comprises the cannabinoid receptors type 1 (CB1) and type 2 (CB2), their endogenous ligands (endocannabinoids), and the proteins responsible for their biosynthesis and degradation. This ubiquitous signalling system, that has attracted a great deal of scientist interest in the past 15 years, regulates several physiological and pathological functions. In mammals, among other functions, the endocannabinoid is involved in nervous, cardiovascular, metabolic, reproductive and immune functions. Finally, yet importantly, endocannabinoids are known to exert important antiproliferative actions in a great number of tumor cells including breast, brain, skin, thyroid, prostate and colorectal. The following review describes our current knowledge on the effects of two of the most studied endocannabinoids (AEA and 2-AG) on various types of tumor and summarizes the possible mechanism of observed antitumor effects.”  http://www.ncbi.nlm.nih.gov/pubmed/21428888

http://www.eurekaselect.com/73874/article

The endocannabinoid system and cancer: therapeutic implication

Logo of brjpharm

“The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others).

The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system.

Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer.

This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed.

Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients.

Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted.” http://www.ncbi.nlm.nih.gov/pubmed/21410463

“The available literature suggests that the endocannabinoid system may be targeted to suppress the evolution and progression of breast, prostate and bone cancer as well as the accompanying pain syndromes. Many in vitro and in vivo studies have shown that cannabinoids are efficacious in reducing cancer progression (i.e. inhibition of tumour growth and metastases as well as induction of apoptosis and other anti-cancer properties) in breast, prostate and bone cancer. Although this review focuses on these three types of cancer, activation of the endocannabinoid signalling system produces anti-cancer effects in other types of cancer.” http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01327.x/full

No medical benefit from marijuana? How about a cancer cure?

“It’s been known for a long time that THC and other cannabinoids can effectively treat symptoms of cancer sufferers and chemotherapy patients, such as nausea, pain, loss of appetite and fatigue. But what scientists have proven in laboratory experiments and testing on animals the last few years is that cannabinoids also can kill cancer cells and stop the spread of aggressive types of the disease — cancer of the breast, brain, prostate, colon or lungs.

The way cannabinoids work, simply put, is by blocking or deactivating a gene called ID-1 that spreads cancer. One compound that’s been found to be especially effective doing this is called cannabidiol, or CBD.

Also, CBD (which unlike THC is non-psychoactive) and other cannabinoids are non-toxic, which greatly reduces the risk of harmful effects from their use.”

http://kpbj.com/opinions/editors_view/2012-10-02/no_medical_benefit_from_marijuana_how_about_a_cancer_cure