Antitumor Cannabinoid Chemotypes: Structural Insights.

Image result for frontiers in pharmacology“Cannabis has long been known to limit or prevent nausea and vomiting, lack of appetite, and pain. For this reason, cannabinoids have been successfully used in the treatment of some of the unwanted side effects caused by cancer chemotherapy.

Besides their palliative effects, research from the past two decades has demonstrated their promising potential as antitumor agents in a wide variety of tumors.

Cannabinoids of endogenous, phytogenic, and synthetic nature have been shown to impact the proliferation of cancer through the modulation of different proteins involved in the endocannabinoid system such as the G protein-coupled receptors CB1, CB2, and GRP55, the ionotropic receptor TRPV1, or the fatty acid amide hydrolase (FAAH).

In this article, we aim to structurally classify the antitumor cannabinoid chemotypes described so far according to their targets and types of cancer. In a drug discovery approach, their in silico pharmacokinetic profile has been evaluated in order to identify appropriate drug-like profiles, which should be taken into account for further progress toward the clinic.

This analysis may provide structural insights into the selection of specific cannabinoid scaffolds for the development of antitumor drugs for the treatment of particular types of cancer.” https://www.ncbi.nlm.nih.gov/pubmed/31214034

“The first report on the antitumor activity of phytocannabinoids was published over four decades ago. During these last years, significant research has been focused on the therapeutic potential of cannabinoids to manage palliative effects in cancer patients. Besides such palliative applications, some cannabinoids have shown anticancer properties. Since inflammation is a common risk factor for cancer, and some cannabinoids have shown anti-inflammatory properties, they could play a role in chemoprevention.” https://www.frontiersin.org/articles/10.3389/fphar.2019.00621/full
“Antitumor effects of THC.” http://www.ncbi.nlm.nih.gov/pubmed/11097557
“Antitumor effects of cannabidiol” http://www.ncbi.nlm.nih.gov/pubmed/14617682
“Anti-tumour actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/30019449
“Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer.” https://www.ncbi.nlm.nih.gov/pubmed/29940172

The oncogenic role of CB2 in the progression of non-small-cell lung cancer.

Biomedicine & Pharmacotherapy

“Several studies have verified the important role of cannabinoid and cannabinoid receptor agonists in tumor progression. However, little is known about the precise role of CB2 expression level in the progression of non-small-cell lung cancer (NSCLC).

The expression of CB2 in NSCLC tissues and corresponding paracancerous tissues was examined using immunohistochemical staining assay.

CONCLUSION:

Our data suggested that targeting CB2 may inhibit the growth and survival of NSCLC cells, which the Akt/mTOR/P70S6K pathway may be involved in. These results confer the pro-oncogenic role of CB2 in the progression of NSCLC, thus improving our understanding of CB2 in tumor progression.”

https://www.ncbi.nlm.nih.gov/pubmed/31176172

https://www.sciencedirect.com/science/article/pii/S0753332219321341?via%3Dihub

“Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.”  https://www.ncbi.nlm.nih.gov/pubmed/21097714

Should Oncologists Recommend Cannabis?

“Cannabis is a useful botanical with a wide range of therapeutic potential. Global prohibition over the past century has impeded the ability to study the plant as medicine. However, delta-9-tetrahydrocannabinol (THC) has been developed as a stand-alone pharmaceutical initially approved for the treatment of chemotherapy-related nausea and vomiting in 1986. The indication was expanded in 1992 to include treatment of anorexia in patients with the AIDS wasting syndrome. Hence, if the dominant cannabinoid is available as a schedule III prescription medication, it would seem logical that the parent botanical would likely have similar therapeutic benefits. The system of cannabinoid receptors and endogenous cannabinoids (endocannabinoids) has likely developed to help us modulate our response to noxious stimuli. Phytocannabinoids also complex with these receptors, and the analgesic effects of cannabis are perhaps the best supported by clinical evidence. Cannabis and its constituents have also been reported to be useful in assisting with sleep, mood, and anxiety. Despite significant in vitro and animal model evidence supporting the anti-cancer activity of individual cannabinoids-particularly THC and cannabidiol (CBD)-clinical evidence is absent. A single intervention that can assist with nausea, appetite, pain, mood, and sleep is certainly a valuable addition to the palliative care armamentarium. Although many healthcare providers advise against the inhalation of a botanical as a twenty-first century drug-delivery system, evidence for serious harmful effects of cannabis inhalation is scant and a variety of other methods of ingestion are currently available from dispensaries in locales where patients have access to medicinal cannabis. Oncologists and palliative care providers should recommend this botanical remedy to their patients to gain first-hand evidence of its therapeutic potential despite the paucity of results from randomized placebo-controlled clinical trials to appreciate that it is both safe and effective and really does not require a package insert.”

https://www.ncbi.nlm.nih.gov/pubmed/31161270

https://link.springer.com/article/10.1007%2Fs11864-019-0659-9

Modulation of the Endocannabinoid System as a Potential Anticancer Strategy.

 Image result for frontiers in pharmacology“Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoidreceptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31143113

“In addition to the palliative effects of cannabinoid compounds in cancer treatment, the endocannabinoid system provides several targets for systemic anticancer treatment. Accordingly, preclinical studies suggest cannabinoids inhibit cancer progression via inhibition of cancer cell proliferation, neovascularization, invasion and chemoresistance, as well as induction of apoptosis, autophagy and increase of tumor immune surveillance.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.00430/full

Striking lung cancer response to self-administration of cannabidiol: A case report and literature review.

SAGE Journals

“In spite of new drugs, lung cancer is associated with a very poor prognosis. While targeted therapies are improving outcomes, it is not uncommon for many patients to have only a partial response, and relapse during follow-up. Thus, new drugs or re-evaluation of existing therapies used to treat other non-malignant diseases (drug repurposing) are still needed. While this research both in vitroand in vivo is being carried out, it is important to be attentive to patients where the disease responds to treatments not considered standard in clinical practice.

We report here a patient with adenocarcinoma of the lung who, after declining chemotherapy and radiotherapy, presented with tumour response following self-administration of cannabidiol, a non-psychoactive compound present in Cannabis sativa. Prior work has shown that cannabidiol may have anti-neoplastic properties and enhance the immune response to cancer.

The data presented here indicate that cannabidiol might have led to a striking response in a patient with lung cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/30815264

https://journals.sagepub.com/doi/10.1177/2050313X19832160

Lung alveolar tissue destruction and protein citrullination in diesel exhaust exposed mouse lungs.

Basic & Clinical Pharmacology & Toxicology banner

“Humanity faces an increasing impact of air pollution worldwide, including threats to human health. Air pollutants prompt and promote chronic inflammation, tumourigenesis, autoimmune and other destructive processes in the human body.

Post-translational modification of proteins, e.g. citrullination, results from damaging attacks of pollutants, including smoking, air pollution and others, rendering host tissues immunogenic. Citrullinated proteins and citrullinating enzymes, deiminases, are more prevalent in patients with COPD and correlate with ongoing inflammation and oxidative stress.

In this study, we installed an in-house-designed diesel exhaust delivery and cannabidiol vaporization system where mice were exposed to relevant, urban traffic-related levels of diesel exhaust for 14 days and assessed integrity of alveolar tissue, gene expression shifts and changes in protein content in the lungs and other tissues of exposed mice. Systemic presence of modified proteins was also tested.

The protective effect of phytocannabinoids was investigated as well.

Data obtained in our study show subacute effects of diesel exhaust on mouse lung integrity and protein content. Emphysematous changes are documented in exposed mouse lungs. In parallel, increased levels of citrulline were detected in the alveolar lung tissue and peripheral blood of exposed mice.

Pretreatment with vaporized cannabidiol ameliorated some damaging effects.

Results reported hereby provide new insights into subacute lung tissue changes that follow diesel exhaust exposure and suggest possible dietary and/or other therapeutic interventions for maintaining lung health and healthy ageing.”

https://www.ncbi.nlm.nih.gov/pubmed/30801928

https://onlinelibrary.wiley.com/doi/abs/10.1111/bcpt.13213

Anti-tumoural actions of cannabinoids.

British Journal of Pharmacology banner

“The endocannabinoid system has emerged as a considerable target for the treatment of diverse diseases.

In addition to the well-established palliative effects of cannabinoids in cancer therapy, phytocannabinoids, synthetic cannabinoid compounds as well as inhibitors of endocannabinoid degradation have attracted attention as possible systemic anticancer drugs.

As a matter of fact, accumulating data from preclinical studies suggest cannabinoids elicit effects on different levels of cancer progression, comprising inhibition of proliferation, neovascularisation, invasion and chemoresistance, induction of apoptosis and autophagy as well as enhancement of tumour immune surveillance.

Although the clinical use of cannabinoid receptor ligands is limited by their psychoactivity, nonpsychoactive compounds, such as cannabidiol, have gained attention due to preclinically established anticancer properties and a favourable risk-to-benefit profile.

Thus, cannabinoids may complement the currently used collection of chemotherapeutics, as a broadly diversified option for cancer treatment, while counteracting some of their severe side effects.” https://www.ncbi.nlm.nih.gov/pubmed/30019449

“During the last few decades, a large body of evidence has accumulated to suggest endocannabinoids, phytocannabinoids and synthetic cannabinoids exert an inhibitory effect on cancer growth via blockade of cell proliferation and induction of apoptosis. Some studies support the hypothesis that cannabinoids may enhance immune responses against the progressive growth and spread of tumours.”  https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14426#bph14426-fig-0001
“Previous research has shown that cannabinoids can help lessen side effects of anti-cancer therapies. Now a new British Journal of Pharmacology review has examined their potential for the direct treatment of cancer. Studies have shown that cannabinoids may stop cancer cells from dividing and invading normal tissue, and they may block the blood supply to tumors. Some studies also indicate that cannabinoids may enhance the body’s immune response against the growth and spread of tumors.” https://www.eurasiareview.com/19072018-cannabinoids-may-have-a-vast-array-of-anti-cancer-effects/
“Cannabinoids may have a vast array of anti-cancer effects” https://www.sciencedaily.com/releases/2018/07/180718082143.htm

“Cannabinoids may have a vast array of anti-cancer effects”  https://www.eurekalert.org/pub_releases/2018-07/w-cmh071718.php

Marijuana may help fight cancer” https://nypost.com/2018/07/18/marijuana-may-help-fight-cancer/

“Cannabis stops cancer spreading and boosts immune system, say scientists. Studies show cannabinoids can stop cancer cells from dividing and spreading, and blocks blood supply to tumours” https://www.plymouthherald.co.uk/news/health/cannabis-can-cure-cancer-proof-1803485
“Cannabis stops cancer spreading and boosts immune system, say scientists. Cannabis can act as a treatment for cancer and boost the immune system, claims a new study.” https://www.devonlive.com/news/health/cannabis-can-cure-cancer-proof-1803485
“Cannabis stops cancer spreading and boosts immune system, say scientists. Cannabis can act as a treatment for cancer and boost the immune system, claims a new study.” https://www.cornwalllive.com/news/uk-world-news/cannabis-can-cure-cancer-proof-1803485
Cannabis ‘can act as a treatment for cancer’. Cannabis can enhance the immune system and act as a treatment for cancer, claims a new study. Scientists at Rostock University Medical Centre in Germany claimed the benefits following a review of more than 100 studies.” https://www.thelondoneconomic.com/news/cannabis-can-act-as-a-treatment-for-cancer/19/07/

Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids

Image result for frontiers in oncology

“Many in vitro and in vivo studies have reported on the antitumorigenic effects of plant-derived cannabinoids (CBDs) and their synthetic analogs, including effects in inducing apoptosis and inhibiting tumor cell growth and metastasis.

Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation.

This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.

The advantage of combining CBDs with other therapies is that this may allow simultaneous targeting of tumor progression at different levels, while minimizing toxicities for these therapies relative to toxicities from higher doses when used as monotherapies.”

“Cannabis Science Announces the Second Frontiers Peer-Reviewed Publication of its Research Results on the Use of Cannabinoids in the Treatment of Cancers”  https://globenewswire.com/news-release/2018/05/01/1493854/0/en/Cannabis-Science-Announces-the-Second-Frontiers-Peer-Reviewed-Publication-of-its-Research-Results-on-the-Use-of-Cannabinoids-in-the-Treatment-of-Cancers.html

INSIGHT ON THE IMPACT OF ENDOCANNABINOID SYSTEM IN CANCER: A REVIEW.

British Journal of Pharmacology banner

“In the last decades, the endocannabinoid system has attracted a great interest in medicine and cancer disease is probably one of its most promising therapeutic areas.

On the one hand, endocannabinoid system expression has been found altered in numerous types of tumours compared to healthy tissue, and this aberrant expression has been related to cancer prognosis and disease outcome, suggesting a role of this system in tumour growth and progression that depends on cancer type.

On the other hand, it has been reported that cannabinoids exert an anticancer activity by inhibiting the proliferation, migration and/or invasion of cancer cells; and also tumour angiogenesis.

The endocannabinoid system may be considered as a new therapeutic target, although further studies to fully establish the effect of cannabinoids on tumour progression remain necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/29663308

The effect of nabilone on appetite, nutritional status, and quality of life in lung cancer patients: a randomized, double-blind clinical trial.

Supportive Care in Cancer

“Over one half of the patients diagnosed with advanced lung cancer experience anorexia. In addition to its high incidence, cancer-induced anorexia promotes the development of the anorexia-cachexia syndrome, which is related to poor clinical outcomes.

Recently, drugs derived from cannabinoids, such as Nabilone, have been recognized for their appetite improvement properties.

METHODS:

This is a randomized, double-blind, placebo-controlled clinical trial to assess the effect of Nabilone vs. placebo on the appetite, nutritional status, and quality of life in patients diagnosed with advanced Non-small cell lung cancer (NSCLC) (NCT02802540).

CONCLUSION:

Nabilone is an adequate and safe therapeutic option to aid in the treatment of patients diagnosed with anorexia. Larger trials are necessary in order to draw robust conclusions in regard to its efficacy in lung cancer patients.”

https://www.ncbi.nlm.nih.gov/pubmed/29550881

“Nabilone is a synthetic cannabinoid with therapeutic use as an antiemetic and as an adjunct analgesic for neuropathic pain. It mimics tetrahydrocannabinol (THC), the primary psychoactive compound found naturally occurring in Cannabis.”  https://en.wikipedia.org/wiki/Nabilone