Gene Profiling of Cannabis-sativa-mediated Apoptosis in Human Melanoma Cells

Anticancer Research: 43 (3)

“Background/aim: Malignant melanoma is an aggressive skin cancer, accounting for the majority of skin cancer deaths. Prognosis is often poor and finding effective treatment remains a challenge. Tetrahydrocannabinol (THC) and cannabidiol (CBD) are main bioactive components of Cannabis sativa plant extracts that have been shown to exert anti-tumor effects. In this study, we aimed to perform gene expression analysis of human melanoma A375 cells following stimulation with C. sativa extracts.

Materials and methods: Gene expression profiles of A375 human melanoma and Vero (control) cell lines were evaluated by RNA sequencing and quantitative real-time PCR.

Results: Flow cytometry showed that the THC+CBD cannabis fractions induced apoptosis on A375 cells. Induction of apoptosis was accompanied by a notable up-regulation of DNA damage inducible transcript 3 (DDIT), nerve growth factor receptor (NGFR), colony-stimulating factor 2 (CSF2), growth arrest and DNA damage inducible beta (GADD45B), and thymic stromal lymphopoietin (TSLP) genes and down-regulation of aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), cyclin E2 (CCNE2), integrin subunit alpha 9 (ITGA9), proliferating cell nuclear antigen (PCNA) and E2F transcription factor 1 (E2F1) genes. Treatment of A375 cells with the THC+CBD fraction inhibited the phosphorylation of ERK1/2 signaling pathway, which regulates melanoma cell proliferation. We showed that the THC+CBD combination disrupted melanoma cell migration.

Conclusion: Use of C. sativa-derived extracts containing equal amounts of THC and CBD is proposed as a potential treatment of melanoma.”

https://pubmed.ncbi.nlm.nih.gov/36854502/

https://ar.iiarjournals.org/content/43/3/1221

Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment

ijms-logo

“Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa‘s biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.”

https://pubmed.ncbi.nlm.nih.gov/36614303/

“In conclusion, there is a complex array of effects that polyphenolic and cannabinoid compounds elicit in relation to melanoma. Multiple biochemical and genetic cascades are regulated through the presence of these natural substances. Polyphenolic compounds emergingly demonstrate a significant capacity to mediate many of the impacts of cancer, including pain, inflammation and invasiveness. Combined administration of polyphenol compounds has shown existing promise for improvement of potency and bioactivity of these substances. To combat the complexity of cancer, new pharmacological perspectives are necessary. Accordingly, plant polyphenols, particularly those of cannabis provide a deep well of structural potential for the emergence of novel drugs with multi-applicability to the total sphere of cancer treatment. This is merely the budding tip of biocompounds available for exploration in plant-based medicine and is a substantive base for future research.”

https://www.mdpi.com/1422-0067/24/1/859

Formulation and development of novel lipid-based combinatorial advanced nanoformulation for effective treatment of non-melanoma skin cancer

International Journal of Pharmaceutics

“Non-melanoma skin cancer is one of the most common malignancies reported with high number of morbidities, demanding an advanced treatment option with superior chemotherapeutic effects. Due to high degree of drug resistance, conventional therapy fails to meet the desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells.

Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The NLCs were optimized using central composite design that showed an average particle size of 206 nm and a zeta potential of -34 mV. In addition, in vitro and ex vivo drug permeations studies demonstrated the effective delivery of both drugs in the skin layers via lipid structured nanocarriers.

Also, the prepared FU-CBD-NLCs showed promising effect in-vitro cell studies including MTT assays, wound healing and cell cycle as compared to the conventional formulation. Moreover, dermatokinetic studies shows there was superior deposition of drugs at epidermal and the dermal layer when treated with FU-CBD-NLCs.

In the end, overall study offered a novel combinatorial chemotherapy that could be an option for the treatment of non-melanoma skin cancer.”

https://pubmed.ncbi.nlm.nih.gov/36608807/

https://www.sciencedirect.com/science/article/abs/pii/S0378517322011358?via%3Dihub

Photodynamic Therapy Efficacy of Novel Zinc Phthalocyanine Tetra Sodium 2-Mercaptoacetate Combined with Cannabidiol on Metastatic Melanoma

pharmaceutics-logo

“This work reports for the first time on the synthesis, characterization, and photodynamic therapy effect of a novel water-soluble zinc (II) 2(3), 9(10), 16(17), 23(24)-tetrakis-(sodium 2-mercaptoacetate) phthalocyanine (ZnPcTS41), on metastatic melanoma cells (A375) combined with cannabidiol (CBD). The ZnPcTS41 structure was confirmed using FTIR, NMR, MS, and elemental analysis while the electronic absorption spectrum was studied using UV-VIS. The study reports further on the dose-dependent effects of ZnPcTS41 (1-8 µM) and CBD alone (0.3-1.1 µM) at 636 nm with 10 J/cm2 on cellular morphology and viability. The IC50 concentrations of ZnPcTS41 and CBD were found to be 5.3 µM and 0.63 µM, respectively. The cytotoxicity effects of the ZnPcTS41 enhanced with CBD on A375 cells were assessed using MTT cell viability assay, ATP cellular proliferation and inverted light microscopy. Cell death induction was also determined via Annexin V-FITC-PI. The combination of CBD- and ZnPcTS41-mediated PDT resulted in a significant reduction in cell viability (15%***) and an increase in the late apoptotic cell population (25%*). These findings suggest that enhancing PDT with anticancer agents such as CBD could possibly obliterate cancer cells and inhibit tumor recurrence.”

https://pubmed.ncbi.nlm.nih.gov/36365236/

https://www.mdpi.com/1999-4923/14/11/2418/htm

The Synthetic Cannabinoid URB447 Exerts Antitumor and Antimetastatic Effect in Melanoma and Colon Cancer

pharmaceuticals-logo

“The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer (CRC) aggressiveness and metastatic growth in the liver. We used the synthetic cannabinoid URB447, a known CB2 agonist and CB1 antagonist drug, and studied prometastatic ability of mouse B16 melanoma and MCA38 CRC cells, by means of proliferation, apoptosis, cell cycle, migration and matrix degradation in vitro upon URB447 treatment. We reported a dose-dependent viability decrease in both tumor types. This result is partly mediated by apoptotic cell death and cell cycle arrest in G1/G0 phase, as observed through flow cytometry. Melanoma and CRC cell migration was affected in a dose-dependent fashion as observed through scratch assay, whereas the secretion of matrix degrading proteins metalloprotease 2 (MMP2) and 9 (MMP9) in tumor cells did not significantly change. Moreover, daily treatment of tumor bearing mice with URB447 decreased the development of liver metastasis in a melanoma model in vivo. This proof of concept study points out to the synthetic cannabinoid URB447 as a potential candidate for deeper studies to confirm its potential as antitumor therapy and liver metastasis treatment for CRC and melanoma.”

https://pubmed.ncbi.nlm.nih.gov/36297277/

https://www.mdpi.com/1424-8247/15/10/1166/htm

Cannabidiol Interacts Antagonistically with Cisplatin and Additively with Mitoxantrone in Various Melanoma Cell Lines-An Isobolographic Analysis

ijms-logo

“The medical application of cannabidiol (CBD) has been gathering increasing attention in recent years. This non-psychotropic cannabis-derived compound possesses antiepileptic, antipsychotic, anti-inflammatory and anxiolytic properties. Recent studies report that it also exerts antineoplastic effects in multiple types of cancers, including melanoma.

In this in vitro study we tried to reveal the anticancer properties of CBD in malignant melanoma cell lines (SK-MEL 28, A375, FM55P and FM55M2) administered alone, as well as in combination with mitoxantrone (MTX) or cisplatin (CDDP).

The effects of CBD on the viability of melanoma cells were measured by the MTT assay; cytotoxicity was determined in the LDH test and proliferation in the BrdU test. Moreover, the safety of CBD was tested in human keratinocytes (HaCaT) in LDH and MTT tests.

Results indicate that CBD reduces the viability and proliferation of melanoma-malignant cells and exerts additive interactions with MTX. Unfortunately, CBD produced antagonistic interaction when combined with CDDP. CBD does not cause significant cytotoxicity in HaCaT cell line.

In conclusion, CBD may be considered as a part of melanoma multi-drug therapy when combined with MTX. A special attention should be paid to the combination of CBD with CDDP due to the antagonistic interaction observed in the studied malignant melanoma cell lines.”

https://pubmed.ncbi.nlm.nih.gov/35743195/

https://www.mdpi.com/1422-0067/23/12/6752

The Effectiveness and Safety of Medical Cannabis for Treating Cancer Related Symptoms in Oncology Patients

Frontiers in Pain Research (@FrontPain) / Twitter

“The use of medical cannabis (MC) to treat cancer-related symptoms is rising. However, there is a lack of long-term trials to assess the benefits and safety of MC treatment in this population. In this work, we followed up prospectively and longitudinally on the effectiveness and safety of MC treatment.

Oncology patients reported on multiple symptoms before and after MC treatment initiation at one-, three-, and 6-month follow-ups. Oncologists reported on the patients’ disease characteristics. Intention-to-treat models were used to assess changes in outcomes from baseline. MC treatment was initiated by 324 patients and 212, 158 and 126 reported at follow-ups.

Most outcome measures improved significantly during MC treatment for most patients (p < 0.005). Specifically, at 6 months, total cancer symptoms burden declined from baseline by a median of 18%, from 122 (82–157) at baseline to 89 (45–138) at endpoint (−18.98; 95%CI= −26.95 to −11.00; p < 0.001). Reported adverse effects were common but mostly non-serious and remained stable during MC treatment.

The results of this study suggest that MC treatment is generally safe for oncology patients and can potentially reduce the burden of associated symptoms with no serious MC-related adverse effects.

The main finding of the current study is that most cancer comorbid symptoms improved significantly during 6 months of MC treatment.

Additionally, we found that MC treatment in cancer patients was well tolerated and safe.”

https://pubmed.ncbi.nlm.nih.gov/35669038/

https://www.frontiersin.org/articles/10.3389/fpain.2022.861037/full?utm_source=fweb

“Cancer Pain Treatment Using Marijuana Safe and Effective, Large Study Finds”

https://www.newsweek.com/cannabis-medicinal-cancer-patient-symptoms-pain-relief-1711981


The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies

“Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons.

Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects.

In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread.

This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.”

https://pubmed.ncbi.nlm.nih.gov/34830856/

“Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research.”

https://www.mdpi.com/2072-6694/13/22/5701


Impact of Cannabinoid Compounds on Skin Cancer

“Drugs targeting the endocannabinoid system are of interest as potential systemic chemotherapeutic treatments and for palliative care in cancer.

In this context, cannabinoid compounds have been successfully tested as a systemic therapeutic option in preclinical models over the past decades. Recent findings have suggested an essential function of the endocannabinoid system in the homeostasis of various skin functions and indicated that cannabinoids could also be considered for the treatment and prophylaxis of tumour diseases of the skin.

Cannabinoids have been shown to exert their anticarcinogenic effects at different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy. This review provides an insight into the current literature on cannabinoid compounds as potential pharmaceuticals for the treatment of melanoma and squamous cell carcinoma.”

https://pubmed.ncbi.nlm.nih.gov/35406541/

“Recent research has suggested that the endocannabinoid system offers several pharmacotherapeutic targets for drug administration as new options for the treatment and prophylaxis of skin cancer. This review focused on the anticarcinogenic mechanisms of cannabinoids at the different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy.”

https://www.mdpi.com/2072-6694/14/7/1769


Plant-derived cannabinoids as anticancer agents

“Substantial preclinical evidence demonstrates the antiproliferative, cytotoxic, and antimetastatic properties of plant-derived cannabinoids (phytocannabinoids) such as cannabidiol and tetrahydrocannabinol. The cumulative body of research into the intracellular mechanisms and phenotypic effects of these compounds supports a logical, judicious progression to large-scale phase II/III clinical trials in certain cancer types to truly assess the efficacy of phytocannabinoids as anticancer agents.”

https://pubmed.ncbi.nlm.nih.gov/35260379/