“Background: One of the most disabling symptoms of patients with multiple sclerosis (MS) is spasticity which affects their quality of life. Nowadays, cannabinoids are used for spasticity control in patients with MS, while the efficacy and safety are not clearly understood. So, we designed this systematic review and meta-analysis to assess the efficacy of cannabinoids for controlling MS-related spasticity.
Methods: PubMed, Scopus, EMBASE, Web of Science, and Google Scholar were systematically searched by two independent researchers on 1 May 2023. They also searched gray literature (references of included studies, as well as conference abstracts).
Results: A literature search revealed 6552 records, 95 full-texts were evaluated, and finally, 31 studies remained for systematic review. Among included studies, six randomized trials were included. Nabiximols was the most commonly used medication for controlling MS-related spasticity. Mean Expanded Disability Status Scale ranged between 4.6 and 7. Most studies (17 studies) were done in Italy, followed by Germany (4 studies). The pooled standardized mean difference (SMD) of NRS (Numeric Rating Scale) (after-before) is estimated as -1.41 (95% confidence interval (CI): -1.65, -1.17) (I2 = 97%, p < 0.001). The pooled standardized mean difference (SMD) of Ashworth (after-before) is estimated as -0.39 (95% CI: -0.72, -0.06) (I2 = 69.9%, p = 0.005).
Conclusion: The results of this systematic review and meta-analysis showed that nabiximols was the most common cannabinoid which was used to control MS-related spasticity, and it was effective in controlling MS-related spasticity (significantly decreased SMD of NRS, and Ashworth after treatment).”
“The results of this systematic review and meta-analysis showed that nabiximols was the most common cannabinoid which was used to control MS-related spasticity, and it was effective in controlling MS-related spasticity (significantly decreased SMD of NRS, and Ashworth after treatment).”
“Cannabidiol (CBD), a cannabinoid that does not create psychoactive activities, has been identified as having a multitude of therapeutic benefits.
This study delves into the chemical properties, pharmacokinetics, safety and toxicity, pharmacological effects, and most importantly, the association between the therapeutic potential of CBD and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
The relationship between Nrf2 and CBD is closely linked to certain proteins that are associated with cardiovascular dysfunctions, cancers, and neurodegenerative conditions. Specifically, Nrf2 is connected to the initiation and progression of diverse health issues, including nephrotoxicity, bladder-related diseases, oral mucositis, cancers, obesity, myocardial injury and angiogenesis, skin-related inflammations, psychotic disorders, neuropathic pain, Huntington’s disease, Alzheimer’s disease, Parkinson’s disease, neuroinflammation, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis.
The association between CBD and Nrf2 is a zone of great interest in the medical field, as it has the potential to significantly impact the treatment and prevention of wide-ranging health conditions. Additional investigation is necessary to entirely apprehend the mechanisms underlying this crucial interplay and to develop effective therapeutic interventions.”
“With the recent introduction of a number of highly effective disease-modifying treatments (DMTs) and the resulting almost complete prevention of acute relapses in many patients with multiple sclerosis (MS), the interest of MS clinicians has gradually shifted from relapse prevention to counteraction of disease progression and the treatment of residual symptoms.
Targeting the cannabinoid system with nabiximols is an approved and effective strategy for the treatment of spasticity secondary to MS.
Recently, the concept of spasticity plus syndrome (SPS) was introduced to account for the evidence that spasticity often appears in MS patients in clusters with other symptoms (such as pain, bladder dysfunction, sleep, and mood disorders), where cannabinoids can also be effective due to their broader action on many immune and neuronal functions. Interestingly, outside these symptomatic benefits, extensive pre-clinical and clinical research indicated how the modulation of the cannabinoid system results in significant anti-inflammatory and neuroprotective effects, all potentially relevant for MS disease control.
This evidence makes nabiximols a potential disease modifying symptomatic treatment (DMST), a concept introduced in an attempt to overcome the often artificial distinction between DMTs and symptomatic therapies (STs).”
“Interest in medical cannabis and cannabis-based medicinal products (CBMPs) has increased greatly in recent years. Two cannabinoids are of principal importance; delta-9-tetrahydrocannabinol (∆9-THC), the primary psychoactive component, and also cannabidiol (CBD), considered non-intoxicating. Each has distinct mechanisms of action and different therapeutic potentials. CBMPs differ in their ∆9-THC and CBD components; predominantly ∆9-THC, balanced formulations with equivalent ∆9-THC and CBD elements, and CBD-predominant products.
In this narrative review, we evaluate the published evidence for the clinical benefits of CBMPs and overall benefits in well-being. We also review the overall safety profile and discuss the potential for dependence with CBMPs. Evidence can be drawn from a wide range of randomized and other controlled studies and from observational real-world studies.
Most data from observational registry studies are supportive of ∆9-THC-based products (∆9-THC-predominant or balanced CBMPs) in the management of chronic neuropathic pain. Balanced products are also effective in reducing spasticity in multiple sclerosis. Most CBMPs show benefit in providing symptomatic benefits in reducing anxiety, nausea, and in improving sleep, but the place of specific products is more subtle, and choice guided by specific circumstances. Symptomatic improvements are accompanied by improved quality of life and well-being. Safety data indicate that CBMPs are generally well tolerated in most patients without specific contraindications. The majority of adverse effects are non-serious, and transient; most are principally associated with ∆9-THC and are dose-dependent. In contrast to recreational cannabis use, there is little evidence from clinical studies that CBMPs have any potential for dependence.”
“Neurodegenerative disorders (NDs) such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce malfunction of psycho-motor functions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of its associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation.
Cannabidiol is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo.
Cannabidiol has gained attention as a promising therapeutic drug candidate for the management of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as its clinical applications in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.”
“The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis.
This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer’s Disease, multiple sclerosis, or Parkinson’s disease.
The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis.
The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.”
“Since neurodegenerative diseases like Alzheimer’s, Parkinson’s, multiple sclerosis, Huntington’s, and amyotrophic lateral sclerosis present significant healthcare and therapeutic challenges due to not only their complex etiology or pathophysiology but symptoms severity as well, it is important to keep the attention on improving constantly effective therapeutic methods devoted to neurodegenerative diseases treatment.
Recent studies indicate cannabinoids, particularly from Cannabis sativa, to hold promise in addressing key pathological processes associated with these disorders.
Cannabinoids, especially THC and CBD, demonstrate anti-aggregative effects, modulating the endocannabinoid system and interacting with cannabinoid receptors 1 and 2, offering potential in mitigating protein aggregation seen in disorders like multiple sclerosis. They also activate CBR1, protecting against mitochondrial dysfunction, crucial in diseases disrupting energy distribution, such as demyelination.
Emerging evidence suggests that vitamin B12, essential for cellular processes, could complement therapeutic strategies, potentially enhancing the effects of CBD. Additionally, CBD shows promise in reversing locomotor changes in Parkinson’s disease independently of NPR-19 receptors, while also protecting dopaminergic neurons and reducing reactive oxygen species accumulation. Thus, the integration of nanoparticles of β-caryophyllene, a CB2R binder, as explored by Alberti et al. (2020) [4], represents potential advancement in developing therapies that improve drug BBB crossing and enhance overall treatment efficacy, moreover, accordingly, the process aimed at combining RNA aptamers with cannabinoids and vitamin B12 may offer precise targeted therapies, but rigorous testing is necessary before clinical use.
This combined approach represents a promising frontier in neurodegenerative disease treatment, highlighting ongoing research into cannabinoids’ effects and applications across various disease contexts. Understanding their interaction with mitochondrial function and cellular communication holds potential for novel therapeutic strategies. Further investigation is needed to fully grasp cannabinoids’ effects and applications in diverse disease contexts.”
“Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties.
Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery.
This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies.
Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.”
“Background: Cannabinoid oro-mucosal spray nabiximols is approved for patients with moderate to severe multiple sclerosis spasticity (MSS) resistant to other antispastic medications. Few real-world data are available on the effectiveness, safety and patients’ satisfaction in MS patients treated with nabiximols as monotherapy.
Methods: To investigate the effectiveness, tolerability and satisfaction of nabiximols in a real-life multicentric Swiss cohort as monotherapy or with stable doses of other antispastic medications, and explore clinical features which may predict treatment response. The following data were collected at treatment start (baseline) and 12 weeks thereafter: Modified Ashworth scale (MAS), scores at numerical rating scales ranging from 0 (absent) to 10 (considerable) for effect on spasticity (sNRS), pain (pNRS), gait (gNRS), urinary symptoms (uNRS), tolerability (tNRS) as assessed by the treating neurologist, and overall treatment satisfaction (TsNRS) and tolerability (tNRS) as assessed by the patient.
Results: Ninety-five patients (44 relapsing remitting, 37 secondary progressive and 14 primary progressive MS; median age = 53 (IQR 45-62); female 70%; median EDSS 6 (IQR 4-6), concomitant antispastic treatments in 54% of patients) were included. From baseline to week 12, median MAS score decreased from 3.0 to 2.0 (p < 0.001). Median scores of the each NRS also significantly decreased (p < 0.001 for all comparisons). At week 12, the median TsNRS and tTS scores were 8/10 (IQR: 6-9) and 9/10 (IQR: 7-10), respectively, and 93.7% of patients continued to use nabiximols at the average dose of six sprays/day. No clinical factors, including use of nabiximols as add on vs. monotherapy, were associated with responder status.
Conclusions: Our first Swiss, multicentric, observational, real-life study supports and enhances previous finding of nabiximols as monotherapy and as add-on therapy, being an effective, safe and well-tolerated treatment option for resistant MS spasticity and spasticity-related symptoms (pain, bladder dysfunction and gait).”
“Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation, demyelination and axonal loss. Cannabis, an immunomodulating agent, is known for its ability to treat MS effectively. However, due to variations in the profile of secondary metabolites, especially cannabinoids, among cannabis cultivars, the effectiveness of cannabis treatment can vary, with significant variability in the effects on different biological parameters. For screening available cultivars, cellular in vitro as well as pre-clinical in vivo assays, are required to evaluate the effectiveness of the wide range of chemical variability that exists in cannabis cultivars. This study evaluated comparatively three chemically diverse cannabis cultivars, CN2, CN4 and CN6, containing different ratios of phytocannabinoids, for their neuroinflammatory activity in MS model.
Materials and methods: In vitro experiments were performed with lipopolysaccharide (LPS)-activated BV-2 microglia and primary glial cells to evaluate the effect of different cannabis cultivars on nitric oxide (NO) and inflammatory cytokines, as well as inducible nitric oxide synthase (iNOS) protein expression. An in vivo experiment using the experimental autoimmune encephalomyelitis (EAE) MS model was conducted using Myelin oligodendrocyte glycoprotein (MOG) as the activating peptide. The cannabis extracts of the cultivars CN2, CN4, CN6 or vehicle, were intraperitoneally injected with clinical scores given based on observed symptoms over the course of study. At the end of the experiment, the mice were sacrificed, and splenocyte cytokine secretion was measured using ELISA. Lumbar sections from the spinal cord of treated MS mice were evaluated for microglia, astrocytes and CD4+ cells.
Results: Extracts of the CN2 cultivar contained tetrahydrocannabinolic acid (THCA) and tetrahydrocannabinol (THC) without cannabidiol (CBD), and a number of monoterpenes. CN4 contained cannabidiolic acid (CBDA) and tetrahydrocannabidiolic acid (THCA), with significant amounts of THC: CBD in a 1:1 ratio, as well as sesquiterpenes and some monoterpenes; and CN6 contained primarily CBDA and THCA, as well as THC and CBD in a 2:1 ratio, with some sesquiterpenes and no monoterpenes. All extracts were not cytotoxic in glial cells up to 50 µg/ml. Dose dependent inhibition of LPS-induced BV2 as well as primary microglial NO secretion confirmed the anti-inflammatory and anti-oxidative activity of the three cannabis cultivars. CN2 but not CN4 reduced both astrocytosis and microglial activation in lumbar sections of EAE mice. In contrast, CN4 but not CN2 significantly decreased the secretion of TNFα and Interferon γ (IFNγ) in primary splenocytes extracted from EAE mice.
Conclusions: While both cannabis cultivars, CN2 and CN4, significantly reduced the severity of the clinical signs throughout the course of the study, they modulated different inflammatory mediators and pathways, probably due to differences in their phytocannabinoid composition. This demonstrates the differential potential of cannabis cultivars differing in chemotype to regulate neuroinflammation and their potential to treat MS.”
“Introduction: Whilst disease-modifying therapies are the cornerstone for treatment of multiple sclerosis (MS), there is a need to develop novel therapeutics for the symptomatic sequalae of the disease. Cannabis-based medicinal products (CBMPs) have been suggested as a potential therapy for the associated pain, spasticity, and mental health disorders. However, there is a paucity of clinical evidence on CBMPs in MS. The aim of this study is to assess changes in MS-specific and general health-related quality of life (HRQoL) outcomes alongside adverse event incidence in patients prescribed CBMPs for MS from the UK Medical Cannabis Registry (UKMCR).
Method: Patients prescribed CBMPs for MS symptoms for longer than one month were identified from the UKMCR. The primary outcomes were changes from baseline in MS Quality of Life-54 (MSQoL-54), Generalised Anxiety Disorder-7 (GAD-7), Single-Item Sleep Quality Scale (SQS), and EQ-5D-5L scales at one month, three months and six months. p < 0.050 was defined as statistically significant.
Results: 141 patients met the inclusion criteria for the study. There was an improvement in the following subscales of the MSQoL-54 at 6 months: change in health scale, cognitive function, mental health composition, physical health, role limitations due to physical limitation and due to emotional problems, as well as social and sexual function (p < 0.050). There were also improvements in the EQ-5D-5L index value, GAD-7 and SQS (p < 0.050). 146 (103.55 %) adverse events were reported in total. Most were considered mild (n = 47; 33.33 %) and moderate (n = 72; 51.06 %).
Conclusions: This preliminary analysis demonstrates a possible association with improved general health-related quality of life in those prescribed CBMPs for MS. Moreover, the results suggest that CBMPs are well-tolerated in the first 6 months of treatment. However, this must be interpreted with caution considering the limitations of the observational study design.”
“Cannabis-based medicinal products were prescribed to those with multiple sclerosis.•Significant improvements were observed in health-related quality of life. •Treatment was well-tolerated over the course of 6 months.”