Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways.

 Image result for frontiers in immunology“Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination.

Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated.

In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells.

Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31497013

“Combination of THC+CBD has been used to treat human MS. This treatment is known to decrease not only muscle spasticity but also suppress neuroinflammation.”

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01921/full

Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists.

Biochemical Pharmacology“Cannabinoid receptors type 1 (CB1) and type 2 (CB2) are promising targets for a number of diseases, including obesity, neuropathic pain, and multiple sclerosis, among others.

Upon ligand-mediated activation of these receptors, multiple receptor conformations could be stabilized, resulting in a complex pattern of possible intracellular effects. Although numerous compounds have been developed and widely used to target cannabinoid receptors, their mode of action and signaling properties are often only poorly characterized.

From a drug development point of view, unraveling the underlying complex signaling mechanism could offer the possibility to generate medicines with the desired therapeutic profile.

Recently, an increased interest has emerged for the development of agonists that are signaling pathway-selective and thereby do not evoke on-target adverse effects. This phenomenon, in which specific pathways are preferred upon receptor activation by certain ligands, is also known as ‘biased signaling’.

For a particular group of cannabinoid receptor ligands (i.e. CB1/CB2 agonists), namely the synthetic cannabinoid receptor agonists (SCRAs), the research on biased signaling is still in its infancy and interesting outcomes are only recently being revealed.

Therefore, this review aims at providing insights into the recent knowledge about biased agonism mediated by SCRAs so far. In addition, as these outcomes are obtained using a distinct panel of functional assays, the accompanying difficulties and challenges when comparing functional outcomes are critically discussed. Finally, some guidance on the conceptualization of ideal in vitro assays for the detection of SCRA-mediated biased agonism, which is also relevant for compounds belonging to other chemical classes, is provided.”

https://www.ncbi.nlm.nih.gov/pubmed/31472128

https://www.sciencedirect.com/science/article/abs/pii/S0006295219303132?via%3Dihub

Application device for THC:CBD oromucosal spray in the management of resistant spasticity: pre-production testing.

 Publication Cover“Patients with multiple sclerosis spasticity (MSS) and upper limb/hand impairment who are taking 9-delta-tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex®) may have difficulty self-administering their medication, possibly limiting adherence and treatment effectiveness.

A Class I EU device is available to support administration of THC:CBD spray. Pre-production testing was undertaken in a patient sample.

Results: Fifteen patients participated. Mean treatment time with THC:CBD spray was 4 (range: 0.1-6.1) years. 87% of participants ‘always’, ‘often’ or ‘sometimes’ had hand impairment, and 53% reported difficulty administering THC:CBD spray. Participants reported better application using the device (73%), with less strength required (54%). Most participants (93%) considered the instruction leaflet to be clear and many (66%) expressed interest in using the device. Most HCPs (93%) did not foresee any difficulties in use of the device.

Conclusion: The proposed adherence device was useful to address self-application difficulties with THC:CBD spray in our sample. Providing the device to MSS patients with upper limb/hand spasticity impairment may restore autonomy and support adherence to THC:CBD spray.”

https://www.ncbi.nlm.nih.gov/pubmed/31393179

https://www.tandfonline.com/doi/abs/10.1080/17434440.2019.1653182?journalCode=ierd20

Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome.

Brain, Behavior, and Immunity“Currently, a combination of marijuana cannabinoids including delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is used as a drug to treat muscle spasticity in patients with Multiple Sclerosis (MS).

Because these cannabinoids can also suppress inflammation, it is unclear whether such patients benefit from suppression of neuroinflammation and if so, what is the mechanism through which cannabinoids act.

In the currently study, we used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to study the role of gut microbiota in the attenuation of clinical signs of paralysis and inflammation caused by cannabinoids.

THC+CBD treatment attenuated EAE and caused significant decrease in inflammatory cytokines such as IL-17 and IFN-γ while promoting the induction of anti-inflammatory cytokines such as IL-10 and TGF-β. Use of 16S rRNA sequencing on bacterial DNA extracted from the gut revealed that EAE mice showed high abundance of mucin degrading bacterial species, such as Akkermansia muciniphila (A.muc), which was significantly reduced after THC+CBD treatment.

Fecal Material Transfer (FMT) experiments confirmed that THC+CBD-mediated changes in the microbiome play a critical role in attenuating EAE. In silico computational metabolomics revealed that LPS biosynthesis, a key component in gram-negative bacteria such as A.muc, was found to be elevated in EAE mice which was confirmed by demonstrating higher levels of LPS in the brain, while treatment with THC+CBD reversed this trend. EAE mice treated with THC+CBD also had significantly higher levels of short chain fatty acids such as butyric, isovaleric, and valeric acids compared to naïve or disease controls.

Collectively, our data suggest that cannabinoids may attenuate EAE and suppress neuroinflammation by preventing microbial dysbiosis seen during EAE and promoting healthy gut microbiota.”

https://www.ncbi.nlm.nih.gov/pubmed/31356922

https://www.sciencedirect.com/science/article/pii/S0889159119306476?via%3Dihub

Therapeutic impact of orally administered cannabinoid oil extracts in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis.

Biochemical and Biophysical Research Communications“There is a growing surge of investigative research involving the beneficial use of cannabinoids as novel interventional alternatives for multiple sclerosis (MS) and associated neuropathic pain (NPP).

Using an experimental autoimmune encephalomyelitis (EAE) animal model of MS, we demonstrate the therapeutic effectiveness of two cannabinoid oil extract formulations (10:10 & 1:20 – tetrahydrocannabinol/cannabidiol) treatment.

Our research findings confirm that cannabinoid treatment produces significant improvements in neurological disability scoring and behavioral assessments of NPP that directly result from their ability to reduce tumor necrosis factor alpha (TNF-α) production and enhance brain derived neurotrophic factor (BDNF) production.

Henceforth, this research represents a critical step in advancing the literature by scientifically validating the merit for medical cannabinoid use and sets the foundation for future clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/31213295

“Cannabinoid treatment produces improvements in neurological disability scoring. Cannabinoid treatment also improves behavioral assessments of neuropathic pain.”

https://www.sciencedirect.com/science/article/pii/S0006291X19311568?via%3Dihub

Cannabis and multiple sclerosis.

BMJ Journals

“Patients with multiple sclerosis have long turned to complementary therapies to manage symptoms that licensed products can only partially control. Around half of patients with multiple sclerosis admit to previous or current cannabis use for medicinal purposes and would endorse legalisation. Despite many governments worldwide relaxing regulations around medicinal cannabis, there remain many unanswered questions as to how clinicians should prescribe or recommend products, and access to pharmaceutical-grade products remains highly restricted. Here we address what adult neurologists need to know about cannabis and its use in multiple sclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31201234

https://pn.bmj.com/content/early/2019/06/14/practneurol-2018-002137

“There are many anectodal reports of multiple sclerosis (MS) sufferers using the drug and reporting beneficial effects on spasticity, pain, tremor and mood.”  https://pn.bmj.com/content/2/3/154?int_source=trendmd&int_campaign=usage-042019&int_medium=cpc

Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?

Drug Discovery Today

“Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as Δ9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes. Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes, and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the autoimmune environment and the potential to suppress the development and activation of autoreactive cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and rheumatoid arthritis (RA).”

https://www.ncbi.nlm.nih.gov/pubmed/31158514

https://www.sciencedirect.com/science/article/pii/S1359644618304847?via%3Dihub

[Medicinal cannabis].

Image result for Ned Tijdschr Geneeskd.

“The use of cannabis products for medical purposes is rapidly increasing in the Netherlands. Studies suggest that these products have positive effects in the treatment of chronic neuropathic pain, multiple-sclerosis-related spasticity, certain epilepsy syndromes and chemotherapy-related nausea and vomiting.”

https://www.ncbi.nlm.nih.gov/pubmed/31120212

Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders.

The Lancet Neurology

“In the past two decades, there has been an increasing interest in the therapeutic potential of cannabinoids for neurological disorders such as epilepsy, multiple sclerosis, pain, and neurodegenerative diseases. Cannabis-based treatments for pain and spasticity in patients with multiple sclerosis have been approved in some countries. Randomised controlled trials of plant-derived cannabidiol for treatment of Lennox-Gastaut syndrome and Dravet syndrome, two severe childhood-onset epilepsies, provide evidence of anti-seizure effects. Despite positive results in these two severe epilepsy syndromes, further studies are needed to determine if the anti-seizure effects of cannabidiol extend to other forms of epilepsy, to overcome pharmacokinetic challenges with oral cannabinoids, and to uncover the exact mechanisms by which cannabidiol or other exogenous and endogenous cannabinoids exert their therapeutic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910443

https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30032-8/fulltext

Daily Practice Managing Resistant Multiple Sclerosis Spasticity With Delta-9-Tetrahydrocannabinol: Cannabidiol Oromucosal Spray: A Systematic Review of Observational Studies.

 Image result for journal of central nervous system disease“Spasticity is one of the most common symptoms in people with multiple sclerosis (MS). Conventional anti-spasticity agents have limitations in their efficacy and tolerability.

Delta-9-tetrahydrocannabinol: cannabidiol (THC:CBD) spray, a cannabinoid-based medicine, is approved as an add-on therapy for MS spasticity not adequately controlled by other anti-spasticity medications. The results from randomized controlled trials (RCTs) have demonstrated a reduction in the severity of spasticity and associated symptoms. However, RCTs do not always reflect real-life outcomes. We systematically reviewed the complementary evidence from non-interventional real-world studies.

METHODS:

A systematic literature review was conducted to identify all non-RCT publications on THC:CBD spray between 2011 and 2017. Data on study design, patient characteristics, effectiveness, and safety outcomes were extracted from those publications meeting our inclusion criteria.

RESULTS:

In total, we reviewed 14 real-world publications including observational studies and treatment registries. The proportion of patients reaching the threshold of minimal clinical important difference (MCID), with at least a 20% reduction of the spasticity Numeric Rating Scale (NRS) score after 4 weeks ranged from 41.9% to 82.9%. The reduction in the mean NRS spasticity score after 4 weeks was maintained over 6-12 months. The average daily dose was five to six sprays. Delta-9-tetrahydrocannabinol: cannabidiol was well tolerated in the evaluated studies in the same way as in the RCTs. No new or unexpected adverse events or safety signals were reported in everyday clinical practice.

CONCLUSIONS:

The data evaluated in this systematic review provide evidence for the efficacy and safety of THC:CBD in clinical practice and confirm results obtained in RCTs.”

https://www.ncbi.nlm.nih.gov/pubmed/30886530

https://journals.sagepub.com/doi/10.1177/1179573519831997