NICE recommends cannabis based drugs for epilepsy and multiple sclerosis

Image result for the bmj journal“In final appraisal documents the UK National Institute for Health and Care Excellence has recommended the use of cannabidiol with clobazam for treating seizures associated with two rare and severe forms of epilepsy: Lennox-Gastaut syndrome and Dravet syndrome.

The decision comes after NICE initially rejected the use of cannabidiol in draft appraisal documents released in August because of concerns over a lack of data on the drug’s long term effectiveness.

However, in its latest documents NICE has recommended the drug for people aged 2 or over, reporting that clinical trials had shown that, in comparison with usual care, cannabidiol reduced the number of drop and non-drop seizures and the number of convulsive and non-convulsive seizures.

The final appraisal documents are out for consultation until 27 November, and final approval is expected on 18 December.

The documents were released alongside NICE’s final guideline on cannabis based medicinal products. In this, NICE also recommends the use of nabiximols for patients with multiple sclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31712197

https://www.bmj.com/content/367/bmj.l6453

Cannabidiol Regulates Gene Expression in Encephalitogenic T cells Using Histone Methylation and noncoding RNA during Experimental Autoimmune Encephalomyelitis.

 Scientific Reports“Cannabidiol (CBD) has been shown by our laboratory to attenuate experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).

In this study, we used microarray and next generation sequencing (NGS)-based approaches to determine whether CBD would alter genome-wide histone modification and gene expression in MOG sensitized lymphocytes.

In summary, this study demonstrates that CBD suppresses inflammation through multiple mechanisms, from histone methylation to miRNA to lncRNA.”

https://www.ncbi.nlm.nih.gov/pubmed/31673072

“Marijuana (Cannabis sativa) has many biologically active compounds and its medicinal value has been known for centuries. CBD has been shown to have an anti-inflammatory effect in several animal models. In immune system, studies from our lab as well as those from others have shown that both THC and CBD have anti-inflammatory properties. ”

https://www.nature.com/articles/s41598-019-52362-8

The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation.

View details for DNA and Cell Biology cover image“Neutrophil trafficking into damaged or infected tissues is essential for the initiation of inflammation, clearance of pathogens and damaged cells, and ultimately tissue repair. Neutrophil recruitment is highly dependent on the stepwise induction of adhesion molecules and promigratory chemokines and cytokines.

A number of studies in animal models have shown the efficacy of cannabinoid receptor 2 (CB2) agonists in limiting inflammation in a range of preclinical models of inflammation, including colitis, atherosclerosis, multiple sclerosis, and ischemia-reperfusion injury.

Recent work in preclinical models of inflammation raises two questions: by what mechanisms do CB2 agonists provide anti-inflammatory effects during acute inflammation and what challenges exist in the translation of CB2 modulating therapeutics into the clinic.”

Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways.

 Image result for frontiers in immunology“Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination.

Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated.

In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells.

Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31497013

“Combination of THC+CBD has been used to treat human MS. This treatment is known to decrease not only muscle spasticity but also suppress neuroinflammation.”

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01921/full

Insights into biased signaling at cannabinoid receptors: synthetic cannabinoid receptor agonists.

Biochemical Pharmacology“Cannabinoid receptors type 1 (CB1) and type 2 (CB2) are promising targets for a number of diseases, including obesity, neuropathic pain, and multiple sclerosis, among others.

Upon ligand-mediated activation of these receptors, multiple receptor conformations could be stabilized, resulting in a complex pattern of possible intracellular effects. Although numerous compounds have been developed and widely used to target cannabinoid receptors, their mode of action and signaling properties are often only poorly characterized.

From a drug development point of view, unraveling the underlying complex signaling mechanism could offer the possibility to generate medicines with the desired therapeutic profile.

Recently, an increased interest has emerged for the development of agonists that are signaling pathway-selective and thereby do not evoke on-target adverse effects. This phenomenon, in which specific pathways are preferred upon receptor activation by certain ligands, is also known as ‘biased signaling’.

For a particular group of cannabinoid receptor ligands (i.e. CB1/CB2 agonists), namely the synthetic cannabinoid receptor agonists (SCRAs), the research on biased signaling is still in its infancy and interesting outcomes are only recently being revealed.

Therefore, this review aims at providing insights into the recent knowledge about biased agonism mediated by SCRAs so far. In addition, as these outcomes are obtained using a distinct panel of functional assays, the accompanying difficulties and challenges when comparing functional outcomes are critically discussed. Finally, some guidance on the conceptualization of ideal in vitro assays for the detection of SCRA-mediated biased agonism, which is also relevant for compounds belonging to other chemical classes, is provided.”

https://www.ncbi.nlm.nih.gov/pubmed/31472128

https://www.sciencedirect.com/science/article/abs/pii/S0006295219303132?via%3Dihub

Application device for THC:CBD oromucosal spray in the management of resistant spasticity: pre-production testing.

 Publication Cover“Patients with multiple sclerosis spasticity (MSS) and upper limb/hand impairment who are taking 9-delta-tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex®) may have difficulty self-administering their medication, possibly limiting adherence and treatment effectiveness.

A Class I EU device is available to support administration of THC:CBD spray. Pre-production testing was undertaken in a patient sample.

Results: Fifteen patients participated. Mean treatment time with THC:CBD spray was 4 (range: 0.1-6.1) years. 87% of participants ‘always’, ‘often’ or ‘sometimes’ had hand impairment, and 53% reported difficulty administering THC:CBD spray. Participants reported better application using the device (73%), with less strength required (54%). Most participants (93%) considered the instruction leaflet to be clear and many (66%) expressed interest in using the device. Most HCPs (93%) did not foresee any difficulties in use of the device.

Conclusion: The proposed adherence device was useful to address self-application difficulties with THC:CBD spray in our sample. Providing the device to MSS patients with upper limb/hand spasticity impairment may restore autonomy and support adherence to THC:CBD spray.”

https://www.ncbi.nlm.nih.gov/pubmed/31393179

https://www.tandfonline.com/doi/abs/10.1080/17434440.2019.1653182?journalCode=ierd20

Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome.

Brain, Behavior, and Immunity“Currently, a combination of marijuana cannabinoids including delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is used as a drug to treat muscle spasticity in patients with Multiple Sclerosis (MS).

Because these cannabinoids can also suppress inflammation, it is unclear whether such patients benefit from suppression of neuroinflammation and if so, what is the mechanism through which cannabinoids act.

In the currently study, we used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to study the role of gut microbiota in the attenuation of clinical signs of paralysis and inflammation caused by cannabinoids.

THC+CBD treatment attenuated EAE and caused significant decrease in inflammatory cytokines such as IL-17 and IFN-γ while promoting the induction of anti-inflammatory cytokines such as IL-10 and TGF-β. Use of 16S rRNA sequencing on bacterial DNA extracted from the gut revealed that EAE mice showed high abundance of mucin degrading bacterial species, such as Akkermansia muciniphila (A.muc), which was significantly reduced after THC+CBD treatment.

Fecal Material Transfer (FMT) experiments confirmed that THC+CBD-mediated changes in the microbiome play a critical role in attenuating EAE. In silico computational metabolomics revealed that LPS biosynthesis, a key component in gram-negative bacteria such as A.muc, was found to be elevated in EAE mice which was confirmed by demonstrating higher levels of LPS in the brain, while treatment with THC+CBD reversed this trend. EAE mice treated with THC+CBD also had significantly higher levels of short chain fatty acids such as butyric, isovaleric, and valeric acids compared to naïve or disease controls.

Collectively, our data suggest that cannabinoids may attenuate EAE and suppress neuroinflammation by preventing microbial dysbiosis seen during EAE and promoting healthy gut microbiota.”

https://www.ncbi.nlm.nih.gov/pubmed/31356922

https://www.sciencedirect.com/science/article/pii/S0889159119306476?via%3Dihub

Therapeutic impact of orally administered cannabinoid oil extracts in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis.

Biochemical and Biophysical Research Communications“There is a growing surge of investigative research involving the beneficial use of cannabinoids as novel interventional alternatives for multiple sclerosis (MS) and associated neuropathic pain (NPP).

Using an experimental autoimmune encephalomyelitis (EAE) animal model of MS, we demonstrate the therapeutic effectiveness of two cannabinoid oil extract formulations (10:10 & 1:20 – tetrahydrocannabinol/cannabidiol) treatment.

Our research findings confirm that cannabinoid treatment produces significant improvements in neurological disability scoring and behavioral assessments of NPP that directly result from their ability to reduce tumor necrosis factor alpha (TNF-α) production and enhance brain derived neurotrophic factor (BDNF) production.

Henceforth, this research represents a critical step in advancing the literature by scientifically validating the merit for medical cannabinoid use and sets the foundation for future clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/31213295

“Cannabinoid treatment produces improvements in neurological disability scoring. Cannabinoid treatment also improves behavioral assessments of neuropathic pain.”

https://www.sciencedirect.com/science/article/pii/S0006291X19311568?via%3Dihub

Cannabis and multiple sclerosis.

BMJ Journals

“Patients with multiple sclerosis have long turned to complementary therapies to manage symptoms that licensed products can only partially control. Around half of patients with multiple sclerosis admit to previous or current cannabis use for medicinal purposes and would endorse legalisation. Despite many governments worldwide relaxing regulations around medicinal cannabis, there remain many unanswered questions as to how clinicians should prescribe or recommend products, and access to pharmaceutical-grade products remains highly restricted. Here we address what adult neurologists need to know about cannabis and its use in multiple sclerosis.”

https://www.ncbi.nlm.nih.gov/pubmed/31201234

https://pn.bmj.com/content/early/2019/06/14/practneurol-2018-002137

“There are many anectodal reports of multiple sclerosis (MS) sufferers using the drug and reporting beneficial effects on spasticity, pain, tremor and mood.”  https://pn.bmj.com/content/2/3/154?int_source=trendmd&int_campaign=usage-042019&int_medium=cpc

Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?

Drug Discovery Today

“Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as Δ9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes. Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes, and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the autoimmune environment and the potential to suppress the development and activation of autoreactive cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and rheumatoid arthritis (RA).”

https://www.ncbi.nlm.nih.gov/pubmed/31158514

https://www.sciencedirect.com/science/article/pii/S1359644618304847?via%3Dihub