Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.

Fig. 1

“Cannabinoids are a group of compounds found in the marijuana plant (Cannabis sativaL.). Marijuana has been used both for recreational and medicinal purposes for several centuries.

Cannabinoids have been shown to be effective in the treatment of nausea and vomiting associated with cancer chemotherapy, anorexia and cachexia seen in HIV/AIDS patients, as well as neuropathic pain, and spasticity in multiple sclerosis.

More recently, the anti-inflammatory properties of cannabinoids are drawing significant attention. In the last 15 years, studies with marijuana cannabinoids led to the discovery of cannabinoid receptors (CB1 and CB2) and their endogenous ligands, which make up what is known as the endocannabinoid system.

Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially.

Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma.

Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood…

In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects…

…cannabinoids do induce apoptosis in immune cells, alleviating inflammatory responses and protecting the host from acute and chronic inflammation.

The cumulative effect of cannabinoids on all cell populations of the immune system can be beneficial, when there is a need for immune suppression.

For example, in patients with autoimmune diseases such as multiple sclerosis, arthritis and lupus, or in those with septic shock, where the disease is caused by activated immune cells, targeting the immune cells via CB2 agonists may trigger apoptosis and act as anti-inflammatory therapy.

CB2 select agonists are not psychoactive and because CB2 is expressed primarily in immune cells, use of CB2 agonists could provide a novel therapeutic modality against autoimmune and inflammatory diseases.

In addition to the use of exogenous cannabinoids, in vivo manipulation of endocannabinoids may also offer novel treatment opportunities against cancer and autoimmune diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005548/

Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

“For centuries Cannabis sativa and cannabis extracts have been used in natural medicine.

Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis.

In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma.

Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications.

The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.”

http://www.ncbi.nlm.nih.gov/pubmed/19832688

Cannabinoids for pain and nausea

“This is an exciting time for cannabinoid research. The discovery of cannabinoid CB1receptors (expressed by central and peripheral neurones) and CB2 receptors (expressed mainly by immune cells) and endogenous agonists for these receptors has renewed the scientific community’s interest. Independently of these developments society at large has continued an aggressive debate about the therapeutic use of cannabinoids, including demands for their more liberal availability. Cannabinoids have been suggested to have therapeutic value as analgesics and in various conditions, including migraine headaches, nausea and vomiting, wasting syndrome and appetite stimulation in HIV-infected patients, muscle spasticity due to multiple sclerosis or spinal cord injury, movement disorders such as Parkinson’s disease, epilepsy, and glaucoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1120661/

A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping

“The effectiveness of cannabidiolic acid (CBDA) was compared with other potential treatments for anticipatory nausea (AN), using a rat model of contextually elicited conditioned gaping reactions…

Conclusions

CBDA has therapeutic potential as a highly potent and selective treatment for AN without psychoactive or locomotor effects.”

http://link.springer.com/article/10.1007/s00213-014-3498-1

Beyond radio-displacement techniques for Identification of CB1 Ligands: The First Application of a Fluorescence-quenching Assay.

“Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1orthosteric ligands…

…a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators.”

http://www.ncbi.nlm.nih.gov/pubmed/24441508

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Evaluation of the potential of the phytocannabinoids, cannabidivarin (CBDV) and Δ9 -tetrahydrocannabivarin (THCV), to produce CB1 receptor inverse agonism symptoms of nausea in rats.

“The cannabinoid 1(CB1 ) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ9 -tetrahydrocannabivarin (THCV) for their ability to produce these behavioural effects characteristic of CB1 receptor inverse agonism in rats.

…we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour),..

THC, THCV  and CBDV suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential…

The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists.

As well, these compounds may have therapeutic potential in reducing nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/23902479

Health Benefits of Cannabis Tea

Health Benefits of Cannabis Tea 

 

“Reduces Chronic Pain

Reduces Anxiety

Reduces Nausea

May Treat Autoimmune Diseases”

“Marijuana-Infused Tea… Mom always said a cup of tea at night makes it easier to sleep.. Kevin Reed, of The Green Cross medical marijuana dispensary in San Francisco, advises patients to add a little milk after brewing to get the full effect of the cannabis.”  http://www.cbsnews.com/2300-204_162-10004358-12.html

 

“Cannabis Tea… Other names: Pot Tea, Weed Tea…Translations: Kaņepes Tēja, Kanapių arbata, Ceai de canabis, Kanabis Tea, Cần sa trà, Cannabis urządzenia, कैनबिस चाय, Chá de Cannabis, Каннабис чай, Η κάνναβη Τσάι, القنب الشاي, 대마초 차, Cannabis Čaj, Cannabis Teh, 大麻茶, Cannabis para preparar té, Cannabis Čaj, קנאביס תה, Канабис чај, 大麻コーヒー, Cannabis Te, Cannabis per a preparar te, Каннабіс чай, Kannabis Tea, Канабис чай”     http://www.foodista.com/food/3HJ8KNK6/cannabis-tea#

“Cannabis tea revisited: a systematic evaluation of the cannabinoid composition of cannabis tea.”   http://www.ncbi.nlm.nih.gov/pubmed/17604926

25 Benefits to Drinking Green Tea

Medicinal Cannabis Does Not Influence the Clinical Pharmacokinetics of Irinotecan and Docetaxel

“For the past 4,000 years, patients and doctors of each era have resorted to cannabis when conventional treatments were ineffective or lacking. Indeed, in oncology beneficial effects have been reported for cancer-associated anorexia, chemotherapy-induced nausea and vomiting, and palliation…

The only U.S. Food and Drug Administration (FDA)-approved medicinal cannabis products are an oral formulation containing dronabinol (Marinol®)… the synthetic version of delta9-tetrahydrocannabinol (THC), the main pharmacologically active cannabinoid, and capsules containing nabilone, an analog of dronabinol (Cesamet®)…

…many patients claim (subjectively) that a whole or partially purified extract of Cannabis sativa L. offers advantages over a single isolated ingredient…

We anticipated an increased use of medicinal cannabis concurrent with anticancer drugs, and undertook a drug-interaction study to evaluate the effect of concomitant medicinal cannabis on the pharmacokinetics of irinotecan and docetaxel…

Conclusion. Coadministration of medicinal cannabis, as herbal tea, in cancer patients treated with irinotecan or docetaxel does not significantly influence the plasma pharmacokinetics of these drugs. The evaluated variety of medicinal cannabis can be administered concomitantly with both anticancer agents without dose adjustments.”

Full text: http://theoncologist.alphamedpress.org/content/12/3/291.long

[Marihuana and cannobinoids as medicaments].

“Biological activity of cannabinoids is caused by binding to two cannabinoid receptors CB1 and CB2. Psychoactive is not only tetrahydrocannabinol (THC) but also: cannabidiol, cannabigerol or cannabichromen.

Formerly, the usefulness of hemp was assessed in the relation to temporary appeasement of the symptoms of some ailments as nausea or vomiting.

Present discoveries indicates that cannabis-based drugs has shown ability to alleviate of autoimmunological disorders such as: Multiple sclerosis (MS), Rheumatoid arthritis (RA) or inflammatory bowel disease.

Another studies indicates that cannabinoids play role in treatment of neurological disorders like Alzheimer disease or Amyotrophic lateral sclerosis (ALS) or even can reduce spreading of tumor cells.

Cannabinoids stand out high safety profile considering acute toxicity, it is low possibility of deadly overdosing and side-effects are comprise in range of tolerated side-effects of other medications.

In some countries marinol and nabilone are used as anti vomiting and nausea drug. First cannabis-based drug containg naturally occurring cannabinoids is Sativex. Sativex is delivered in an mucosal spray for patients suffering from spasticity in MS, pain relevant with cancer and neuropathic pain of various origin.

Cannabis side-effects varies and depend from several factors like administrated dose, rout of administration and present state of mind. After sudden break from long-lasting use, withdrawal symptoms can appear, although they entirely disappear after a week or two.”

http://www.ncbi.nlm.nih.gov/pubmed/23421098