Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Major Health Benefits of Medical Cannabis

“The benefits of medical marijuana plant are extensive, pervasive, and long-standing. Because of the way the cannabis impacts the Autonomic Nervous System which develops the breath and relaxes the body, prospective for health and curative characteristics are huge. Some of the major health benefits of medical cannabis are explained below:

Treats Migraines

Cannabis healing has been very effective in the treatment of migraine headaches. Migraine headaches are vascular in source and are often preceded by an air characterized by nausea, flashes of light, faintness or photosensitivity.

Slows Down Tumor Growth

Studies have shown that cannabis help in slow down the facsimile and slow down the production of cancer cells in body. It is also a natural antiemetic, which makes it effectual in plummeting the nausea and vomiting related with chemo and radiation therapies. So taking marijuana slows down the tumor growth too.

Relieves Symptoms of Chronic Diseases

Marijuana is one of the best natural pain relievers that can help sufferers of chronic pain live more relaxed lives. The side effects are often much less severe than the other common pain medications.

Prevents Alzheimer’s

Cannabis reduces the occurrence of depression in Alzheimer’s patients, which can help patients to keep up a higher level of brain function. That is a powerful way to keep patients performance for a longer time after the first onset of Alzheimer’s disease.

Treats Glaucoma

Some strains of this medicinal plant have been shown that, they are potentially decreasing the force that glaucoma can place on the optic nerve; thereby the patients can easily cut the critical condition by smoking or taking the marijuana edibles or medicines.

Prevents Seizures

Seizure is a kind of epilepsy which almost affects more than 2 millions of Americans and 30 millions of people worldwide. Epilepsy is a condition when some of the brain cells become abnormally excitable. People using marijuana to control epilepsy should be alert when there is any removal of any tablets which controls seizures may leave you more susceptible to the patient. Marijuana is no exception. Patients with epilepsy are advised to exercise caution when using oral THC because there is no enough sufficient knowledge about the convulsive or anti-convulsive properties of the single compound.

For ADD and ADHD

Many people who endure with ADD and/or ADHD find that medical cannabis recovers their knack to hub and their level of recital with definite tasks. There are no clinical studies on humans but there are some beginner studies have done on animals that point to less hyperactivity and impulsivity with the use of cannabinoids (the active medicines in cannabis).

Relieve PMS

Millions of women have an illness on Premenstrual Syndrome (PMS). PMS includes the symptoms of headaches, abdominal cramps, bloating and fluid retention. Many women report that they have tried several different medications but none as give any significant relief like Medical Marijuana. Cannabis medicine has shown to give symptomatic relief from all the unpleasant symptoms of PMS.

Calm Those With Tourette’s and OCD

Several psychological disorders have been known to be related with the medical benefits of marijuana as well. Taking weed of prescribed amount on regular basis can slow down the tics for those who are suffering from Tourette’s syndrome and Obsessive Compulsive Disorder (OCD). Yes some of the qualities in marijuana plant help the patient to calm themselves when any creation of intrusive thoughts which produces fear, uneasiness and abnormal behaviors.”

http://www.herbalmission.org/major-health-benefits-of-medical-cannabis.php

Medicinal use of cannabis: history and current status.

Abstract

“OBJECTIVE:

To provide an overview of the history and pharmacology of cannabis in relation to current scientific knowledge concerning actual and potential therapeutic uses of cannabis preparations and pure cannabinoids.

METHODS:

The literature on therapeutic uses of cannabis and cannabinoids was assessed with respect to type of study design, quality and variability of data, independent replications by the same or other investigators, magnitude of effects, comparison with other available treatments and reported adverse effects. The results of this review were also compared with those of major international reviews of this topic in the past five years.

CONCLUSIONS:

Pure tetrahydrocannabinol and several analogues have shown significant therapeutic benefits in the relief of nausea and vomiting, and stimulation of appetite in patients with wasting syndrome. Recent evidence clearly demonstrates analgesic and anti-spasticity effects that will probably prove to be clinically useful. Reduction of intraocular pressure in glaucoma and bronchodilation in asthma are not sufficiently strong, long lasting or reliable to provide a valid basis for therapeutic use. The anticonvulsant effect of cannabidiol is sufficiently promising to warrant further properly designed clinical trials. There is still a major lack of long term pharmacokinetic data and information on drug interactions. For all the present and probable future uses, pure cannabinoids, administered orally, rectally or parenterally, have been shown to be effective, and they are free of the risks of chronic inflammatory disease of the airways and upper respiratory cancer that are associated with the smoking of crude cannabis. Smoking might be justified on compassionate grounds in terminally ill patients who are already accustomed to using cannabis in this manner. Future research will probably yield new synthetic analogues with better separation of therapeutic effects from undesired psychoactivity and other side effects, and with solubility properties that may permit topical administration in the eye, or aerosol inhalation for rapid systemic effect without the risks associated with smoke inhalation.”

http://www.ncbi.nlm.nih.gov/pubmed/11854770

[Potential therapeutic usefulness of cannabis and cannabinoids].

Abstract

“Diseases in which Cannabis and cannabinoids have demonstrated some medicinal putative properties are: nausea and vomiting associated with cancer chemotherapy, muscle spasticity (multiple sclerosis, movement disorders), pain, anorexia, epilepsy, glaucoma, bronchial asthma, neuroegenerative diseases, cancer, etc. Although some of the current data comes from clinical controlled essays, the majority are based on anecdotic reports. Basic pharmacokinetic and pharmacodynamic studies and more extensive controlled clinical essays with higher number of patients and long term studies are necessary to consider these compounds useful since a therapeutical point of view.”

http://www.ncbi.nlm.nih.gov/pubmed/11205042

The Therapeutic Potential of Cannabis and Cannabinoids

“Background

Cannabis-based medications have been a topic of intense study since the endogenous cannabinoid system was discovered two decades ago. In 2011, for the first time, a cannabis extract was approved for clinical use in Germany.”

“Therapeutic potential

Cannabis preparations exert numerous therapeutic effects. They have antispastic, analgesic, antiemetic, neuroprotective, and anti-inflammatory actions, and are effective against certain psychiatric diseases. Currently, however, only one cannabis extract is approved for use. It contains THC and CBD in a 1:1 ratio and was licensed in 2011 for treatment of moderate to severe refractory spasticity in multiple sclerosis (MS). In June 2012 the German Joint Federal Committee (JFC, Gemeinsamer Bundesausschuss) pronounced that the cannabis extract showed a “slight additional benefit” for this indication and granted a temporary license valid up to 2015.”

“The cannabis extract, which goes by the generic name nabiximols, has been approved by regulatory bodies in Germany and elsewhere for use as a sublingual spray. In the USA, dronabinol has been licensed since 1985 for the treatment of nausea and vomiting caused by cytostatic therapy and since 1992 for loss of appetite in HIV/Aids-related cachexia. In Great Britain, nabilone has been sanctioned for treatment of the side effects of chemotherapy in cancer patients.”

Results

“Cannabis-based medications exert their effects mainly through the activation of cannabinoid receptors (CB1 and CB2). More than 100 controlled clinical trials of cannabinoids or whole-plant preparations for various indications have been conducted since 1975. The findings of these trials have led to the approval of cannabis-based medicines (dronabinol, nabilone, and a cannabis extract [THC:CBD=1:1]) in several countries. In Germany, a cannabis extract was approved in 2011 for the treatment of moderate to severe refractory spasticity in multiple sclerosis. It is commonly used off label for the treatment of anorexia, nausea, and neuropathic pain. Patients can also apply for government permission to buy medicinal cannabis flowers for self-treatment under medical supervision. The most common side effects of cannabinoids are tiredness and dizziness (in more than 10% of patients), psychological effects, and dry mouth. Tolerance to these side effects nearly always develops within a short time. Withdrawal symptoms are hardly ever a problem in the therapeutic setting.”

Conclusion

“There is now clear evidence that cannabinoids are useful for the treatment of various medical conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442177/

 

[The mechanism of action of cannabis and cannabinoids].

Abstract

“The effect of cannabis can be explained on the basis of the function of the cannabinoid receptor system, which consists of CB receptors (CB1, CB2), endoligands to activate these receptors and an enzyme–fatty acid amidohydrolase–to metabolize the endoligands. The endoligands of the cannabinoid receptor system are arachidonic acid-like substances, and are called endocannabinoids. Indications exist that the body also contains arachidonic acid-like substances that inhibit fatty acid amido hydrolase. Various cannabinoids have diverse effects on the receptors, functioning as agonists, antagonists or partial antagonists, as well as affecting the vanilloid receptor. Many known effects of cannabis can be explained on the basis of this mechanism of action as can the use of cannabis in various conditions including multiple sclerosis, Parkinson’s disease, glaucoma, nausea, vomiting and rheumatoid arthritis.”

http://www.ncbi.nlm.nih.gov/pubmed/16463612

Cannabinoid receptors and their ligands.

Abstract

“There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the “endocannabinoid system” has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/12052030

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266

Established and potential therapeutic applications of cannabinoids in oncology.

Abstract

“Cannabis occurs naturally in the dried flowering or fruiting tops of the Cannabis sativa plant. Cannabis is most often consumed by smoking marihuana. Cannabinoids are the active compounds extracted from cannabis. Recently, there has been renewed interest in cannabinoids for medicinal purposes. The two proven indications for the use of the synthetic cannabinoid (dronabinol) are chemotherapy-induced nausea and vomiting and AIDS-related anorexia. Other possible effects that may prove beneficial in the oncology population include analgesia, antitumor effect, mood elevation, muscle relaxation, and relief of insomnia. Two types of cannabinoid receptors, CB1 and CB2, have been detected. CB1 receptors are expressed mainly in the central and peripheral nervous system. CB2 receptors are found in certain nonneuronal tissues, particularly in the immune cells. Recent discovery of both the cannabinoid receptors and endocannabinoids has opened a new era in research on the pharmaceutical applications of cannabinoids. The use of cannabinoids should be continued in the areas indicated, and further studies are needed to evaluate other potential uses in clinical oncology.”

http://www.ncbi.nlm.nih.gov/pubmed/12618922

Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

Abstract

“The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant’s market withdrawal in the European Union and suspension of rimonabant’s, taranabant’s, and otenabant’s ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued pharmacological profiling, as the prelude to first-in-man testing of CB1 receptor antagonists with unique modes of targeting/pharmacological action, represents an exciting translational frontier in the critical path to CB receptor blockers as medicines.”

http://www.ncbi.nlm.nih.gov/pubmed/19249987