Tolerability of dronabinol alone, ondansetron alone and the combination of dronabinol plus ondansetron in delayed chemotherapy-induced nausea and vomiting.

Image result for J Clin Oncol.

“Dronabinol (Marinol), the synthetic version of tetrahydrocannabinol, is used to treat nausea and vomiting following cancer chemotherapy (CINV).

It has a unique mechanism of action (cannabinoid receptor binding) compared to the more frequently used serotonin receptor antagonists. Tolerability of dronabinol versus ondansetron and the combination of dronabinol plus ondansetron was explored in subjects with delayed CINV.

Dronabinol was well tolerated and resulted in few terminations due to adverse events. The low rate of CNS-related adverse events following D treatment may make it a suitable alternative to serotonin antagonist therapy for delayed CINV.”

https://www.ncbi.nlm.nih.gov/pubmed/27946950

Dronabinol treatment of delayed chemotherapy-induced nausea and vomiting (CINV).

Image result for J Clin Oncol.

“Dronabinol (MARINOL), synthetic tetrahydrocannabinol, binds to cannabinoid receptors and has antiemetic activity. To explore if this novel mechanism would be of benefit in delayed CINV, dronabinol was added to the prophylactic regimen for acute CINV and continued after chemotherapy.

Efficacy at Endpoint (LOCF) Conclusions: Dronabinol (D) was comparable to ondansetron (O) in total response and but was more effective in reducing nausea intensity and vomiting/retching. Results for the combination of DO were similar to either agent alone.

These results support conducting a larger study since D could become an attractive alternative to serotonin receptor antagonists in treating delayed CINV.”

https://www.ncbi.nlm.nih.gov/pubmed/27946578

Central Aspects of Nausea and Vomiting in GI Disorders.

Image result for Curr Treat Options Gastroenterol.

“Nausea and vomiting result from continuous interactions among gastrointestinal, central nervous system, and autonomic nervous system. Despite being closely associated, central pathways of nausea and vomiting appear to be at least partly different and nausea is no longer considered only a penultimate step of vomiting. Although our understanding of central pathways of nausea has improved over the last one decade, it is still very basic.

Afferent pathways from gastrointestinal tract via vagus, vestibular system, and chemoreceptor trigger zone project to nucleus tractus solitarius which, in turn, relays the signal to central pattern generator initiating multiple downstream pathways. This central nausea pathway appears to be under constant modulation by autonomic nervous system and cerebral cortex.

There is also some evidence that central pathway of chronic nausea is different from that of acute nausea and closely resembles that of neuropathic pain. This improved understanding has modified the way we can approach the treatment of acute and chronic nausea.

While conventional therapies such as antiemetics (antiserotoninergic, antihistaminic, antidopaminergic) and prokinetics are commonly used to manage acute nausea, they are not as effective in improving chronic nausea.

Recently, neuromodulators such as tricyclic antidepressants, gabapentin, olanzapine, benzodiazepines, and cannabinoids have been shown to have antinausea effect.

There is a need to study the utility of these drugs in managing chronic functional nausea. Improving our understanding of central and peripheral circuitry of nausea will allow us to better utilize the currently available drugs and develop new therapeutic options.”

https://www.ncbi.nlm.nih.gov/pubmed/27734216

Mechanisms of Broad-Spectrum Antiemetic Efficacy of Cannabinoids against Chemotherapy-Induced Acute and Delayed Vomiting.

pharmaceuticals-logo

“Chemotherapy-induced nausea and vomiting (CINV) is a complex pathophysiological condition and consists of two phases.

The conventional CINV neurotransmitter hypothesis suggests that the immediate phase is mainly due to release of serotonin (5-HT) from the enterochromaffin cells in the gastrointestinal tract (GIT), while the delayed phase is a consequence of release of substance P (SP) in the brainstem. However, more recent findings argue against this simplistic neurotransmitter and anatomical view of CINV.

Revision of the hypothesis advocates a more complex, differential and overlapping involvement of several emetic neurotransmitters/modulators (e.g. dopamine, serotonin, substance P, prostaglandins and related arachidonic acid derived metabolites) in both phases of emesis occurring concomitantly in the brainstem and in the GIT enteric nervous system (ENS).

No single antiemetic is currently available to completely prevent both phases of CINV.

The standard antiemetic regimens include a 5-HT₃ antagonist plus dexamethasone for the prevention of acute emetic phase, combined with an NK1 receptor antagonist (e.g. aprepitant) for the delayed phase. Although NK1 antagonists behave in animals as broad-spectrum antiemetics against different emetogens including cisplatin-induced acute and delayed vomiting, by themselves they are not very effective against CINV in cancer patients.

Cannabinoids such as D⁸-THC also behave as broad-spectrum antiemetics against diverse emetic stimuli as well as being effective against both phases of CINV in animals and patients.

Potential side effects may limit the clinical utility of direct-acting cannabinoid agonists which could be avoided by the use of corresponding indirect-acting agonists.

Cannabinoids (both phyto-derived and synthetic) behave as agonist antiemetics via the activation of cannabinoid CB₁ receptors in both the brainstem and the ENS emetic loci.

An endocannabinoid antiemetic tone may exist since inverse CB₁ agonists (but not the corresponding silent antagonists) cause nausea and vomiting.”

https://www.ncbi.nlm.nih.gov/pubmed/27713384

Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting.

“Despite the advent of classic anti-emetics, chemotherapy-induced nausea is still problematic, with vomiting being somewhat better managed in the clinic.

If post-treatment nausea and vomiting are not properly controlled, anticipatory nausea-a conditioned response to the contextual cues associated with illness-inducing chemotherapy-can develop. Once it develops, anticipatory nausea is refractive to current anti-emetics, highlighting the need for alternative treatment options.

One of the first documented medicinal uses of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) was for the treatment of chemotherapy-induced nausea and vomiting (CINV), and recent evidence is accumulating to suggest a role for the endocannabinoid system in modulating CINV.

Here, we review studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system in human patients and pre-clinical animal models of nausea and vomiting.”

http://www.ncbi.nlm.nih.gov/pubmed/27507945

Cannabinoids biology: the search for new therapeutic targets.

“Cannabinoids, in the form of marijuana plant extracts, have been used for thousands of years for a wide variety of medical conditions, ranging from general malaise and mood disorders to more specific ailments, such as pain, nausea, and muscle spasms.

The discovery of tetrahydrocannabinol, the active principal in marijuana, and the identification and cloning of two cannabinoid receptors (i.e., CB1 and CB2) has subsequently led to biomedical appreciation for a family of endocannabinoid lipid transmitters.

The biosynthesis and catabolism of the endocannabinoids and growing knowledge of their broad physiological roles are providing insight into potentially novel therapeutic targets.

Compounds directed at one or more of these targets may allow for cannabinoid-based therapeutics with limited side effects and abuse liability.”

http://www.ncbi.nlm.nih.gov/pubmed/16809476

Effect of combined oral doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models.

:

“The purpose of this study was to evaluate the potential of oral combined cannabis constituents to reduce nausea.

The objective of this study was to determine the effect of combining subthreshold oral doses of Δ9-tetrahydrocannabinol (THC) and cannabidiolic acid (CBDA) on acute and anticipatory nausea in rat models of conditioned gaping.

RESULTS:

For acute nausea, i.g. administration of subthreshold doses of THC (0.5 and 1 mg/kg) or CBDA (0.5 and 1 μg/kg) significantly suppressed acute nausea-induced gaping, whereas higher individual doses of both THC and CBDA were maximally effective. Combined i.g. administration of higher doses of THC and CBDA (2.5 mg/kg THC-2.5 μg/kg CBDA; 10 mg/kg THC-10 μg/kg CBDA; 20 mg/kg THC-20 μg/kg CBDA) also enhanced positive hedonic reactions elicited by saccharin solution during conditioning. For anticipatory nausea, combined subthreshold i.g. doses of THC (0.1 mg/kg) and CBDA (0.1 μg/kg) suppressed contextually elicited conditioned gaping. When administered i.g., THC was effective on its own at doses ranging from 1 to 10 mg/kg, but CBDA was only effective at 10 μg/kg. THC alone was equally effective by intraperitoneal (i.p.) and i.g. administration, whereas CBDA alone was more effective by i.p. administration (Rock et al. in Psychopharmacol (Berl) 232:4445-4454, 2015) than by i.g. administration.

CONCLUSIONS:

Oral administration of subthreshold doses of THC and CBDA may be an effective new treatment for acute nausea and anticipatory nausea and appetite enhancement in chemotherapy patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27438607

Dronabinol for chemotherapy-induced nausea and vomiting unresponsive to antiemetics.

“Chemotherapy-induced nausea and vomiting (CINV) is one of the most common symptoms feared by patients, but may be prevented or lessened with appropriate medications.

Several antiemetic options exist to manage CINV. Corticosteroids, serotonin receptor antagonists, and neurokinin receptor antagonists are the classes most commonly used in the prevention of CINV. There are many alternative drug classes utilized for the prevention and management of CINV such as antihistamines, benzodiazepines, anticonvulsants, cannabinoids, and dopamine receptor antagonists.

Medications belonging to these classes generally have lower efficacy and are associated with more adverse effects. They are also not as well studied compared to the aforementioned agents.

This review will focus on dronabinol, a member of the cannabinoid class, and its role in CINV.

Cannabis sativa L. (also known as marijuana) contains naturally occurring delta-9-tetrahydrocannibinol (delta-9-THC). The synthetic version of delta-9-THC is the active ingredient in dronabinol that makes dronabinol an orally active cannabinoid.

Evidence for clinical efficacy of dronabinol will be analyzed in this review as monotherapy, in combination with ondansetron, and in combination with prochlorperazine.”

http://www.ncbi.nlm.nih.gov/pubmed/27274310

Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats.

“We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor.

We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murnius) and conditioned gaping (nausea-induced behaviour) in rats.

These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting.”

http://www.ncbi.nlm.nih.gov/pubmed/27263826

Effects of Delta-9-Tetrahydrocannabinol and Cannabidiol on Cisplatin-Induced Neuropathy in Mice.

“Sativex, a cannabinoid extract with a 1 : 1 ratio of tetrahydocannabinol and cannabidiol, has been shown to alleviate neuropathic pain associated with chemotherapy.

This research examined whether tetrahydocannabinol or cannabidiol alone could attenuate or prevent cisplatin-induced tactile allodynia.

These data demonstrate that each of the major constituents of Sativex alone can achieve analgesic effects against cisplatin neuropathy.”

http://www.ncbi.nlm.nih.gov/pubmed/27214593