Activation of Cannabinoid Receptor 2 Attenuates Mechanical Allodynia and Neuroinflammatory Responses in a Chronic Post-Ischemic Pain Model of Complex Regional Pain Syndrome Type I in Rats.

Image result for European Journal of Neuroscience

“Complex regional pain syndrome type 1 (CRPS-I) remains one of the most clinically challenging neuropathic pain syndromes and its mechanism has not been fully characterized.

Cannabinoid receptor 2 (CB2) has emerged as a promising target for treating different neuropathic pain syndromes.

In neuropathic pain models, activated microglia expressing CB2 receptors are seen in the spinal cord.

Chemokine fractalkine receptor (CX3CR1) plays a substantial role in microglial activation and neuroinflammation.

We hypothesized that CB2 agonist could modulate neuroinflammation and neuropathic pain in an ischemia model of CRPS by regulating CB2 and CX3CR1 signaling.

We used chronic post-ischemia pain (CPIP) as a model of CRPS-I. Rats in the CPIP group exhibited significant hyperemia and edema of the ischemic hindpaw and spontaneous pain behaviors (hindpaw shaking and licking).

Intraperitoneal administration of MDA7 (a selective CB2 agonist) attenuated mechanical allodynia induced by CPIP. MDA7 treatment was found to interfere with early events in the CRPS-I neuroinflammatory response by suppressing peripheral edema, spinal microglial activation and expression of CX3CR1 and CB2 receptors on the microglia in the spinal cord.

MDA7 also mitigated the loss of intraepidermal nerve fibers induced by CPIP. Neuroprotective effects of MDA7 were blocked by a CB2 antagonist, AM630.

Our findings suggest that MDA7, a novel CB2 agonist, may offer an innovative therapeutic approach for treating neuropathic symptoms and neuroinflammatory responses induced by CRPS-I in the setting of ischemia and reperfusion injury.”

https://www.ncbi.nlm.nih.gov/pubmed/27717112

High-Intensity Swimming Exercise Decreases Glutamate-Induced Nociception by Activation of G-Protein-Coupled Receptors Inhibiting Phosphorylated Protein Kinase A.

Image result for Mol Neurobiol.

“Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain.

Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanisms through which high-intensity exercise reduces pain remain elusive.

Since the glutamatergic system plays a major role in pain transmission, we firstly analyzed if physical exercise could be able to decrease glutamate-induced nociception through G-protein-coupled receptor (G-PCR) activation.

The second purpose of this study was to examine the effect of exercising upon phosphorylation of protein kinase A (PKA) isoforms induced by intraplantar (i.pl.) glutamate injection in mice.

Our results demonstrate that high-intensity swimming exercise decreases nociception induced by glutamate and that i.pl. or intrathecal injections of cannabinoid, opioid, and adenosine receptor antagonists, AM281, naloxone, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), respectively, prevent this effect.

Furthermore, the peripheral A1 and opioid receptors, but not CB1, are also involved in exercise’s effect. We also verified that glutamate injection increases levels of phosphorylated PKA (p-PKA). High-intensity swimming exercise significantly prevented p-PKA increase.

The current data show the direct involvement of the glutamatergic system on the hyponociceptive effect of high-intensity swimming exercise as well as demonstrate that physical exercise can activate multiple intracellular pathways through G-PCR activation, which share the same endogenous mechanism, i.e., inhibition of p-PKA.”

http://www.ncbi.nlm.nih.gov/pubmed/27624384

A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis.

Image result for journal of pain research

“A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease.

Dose-dependent improvement in pain score was evident across all pain scale elements.

Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids.

Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat.”

http://www.ncbi.nlm.nih.gov/pubmed/27621666

[Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

 

Image result for Zhong Nan Da Xue Xue Bao Yi Xue Ban logo

“Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids.”

Peripherally selective cannabinoid 1 receptor (CB1R) agonists for the treatment of neuropathic pain

 Journal of Medicinal Chemistry

“Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ~0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene’s anti-allodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain.”

http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00516

The future of cannabinoids as analgesic agents: a pharmacologic, pharmacokinetic, and pharmacodynamic overview.

 

“For thousands of years, physicians and their patients employed cannabis as a therapeutic agent.

Despite this extensive historical usage, in the Western world, cannabis fell into disfavor among medical professionals because the technology available in the 1800s and early 1900s did not permit reliable, standardized preparations to be developed.

However, since the discovery and cloning of cannabinoid receptors (CB1 and CB2) in the 1990s, scientific interest in the area has burgeoned, and the complexities of this fascinating receptor system, and its endogenous ligands, have been actively explored.

Recent studies reveal that cannabinoids have a rich pharmacology and may interact with a number of other receptor systems-as well as with other cannabinoids-to produce potential synergies.

Cannabinoids-endocannabinoids, phytocannabinoids, and synthetic cannabinoids-affect numerous bodily functions and have indicated efficacy of varying degrees in a number of serious medical conditions.

Cannabinoid receptor agonists and/or molecules that affect the modulation of endocannabinoid synthesis, metabolism, and transport may, in the future, offer extremely valuable tools for the treatment of a number of currently intractable disorders.”

 http://www.ncbi.nlm.nih.gov/pubmed/17890938

The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain.

 

“Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge.

At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminalnerve (ION).

Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.”

The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain.

“There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects.

Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration.

We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels.

Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27326920

An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease.

“Using eight hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, the majority of whom were experiencing pain despite traditional treatment.

After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta-9-tetrahydrocannabinol on three separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was utilized to attempt to reduce the placebo effect.

Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model demonstrated a significant analgesic response for vaporized cannabis.

When subjective and psychoactive side effects (e.g., good drug effect, feeling high, etc.) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all p<0.0004). Psychoactive and subjective effects were dose dependent.

Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. As the two active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord.

PERSPECTIVE:

A cross-over, randomized, placebo-controlled human laboratory experiment involving administration of vaporized cannabis was performed in patients with neuropathic pain related to spinal cord injury and disease. This study supports consideration of future research that would include longer duration studies over weeks to months in order to evaluate the efficacy of medicinal cannabis in patients with central neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/27286745

The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats.

“These data show that cannabinoids have potent antinociceptive effects through direct actions in the spinal dorsal horn of nociceptive pathway. This suggests that intrathecally administered cannabinoids may offer hopeful strategies for the treatment of diabetic neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/27279983