Opioid and cannabinoid synergy in a mouse neuropathic pain model.

“Clinical studies have reported that pan-cannabinoid receptor agonists may have efficacy in neuropathic pain states and that this might be enhanced by co-administration with opioids. While cannabinoid-opioid analgesic synergy has been demonstrated in animal models of acute pain, it has not been examined in neuropathic pain models. We examined the effect of combination treatment with cannabinoid and opioid receptor agonists on allodynia and side-effects in a nerve injury induced neuropathic pain model.

These findings indicate that combination administration of non-selective opioid and cannabinoid receptor agonists synergistically reduces nerve injury induced allodynia, while producing side-effects in an additive manner. This suggests that combination treatment has an improved anti-allodynic potency and therapeutic index in a neuropathic pain model.”

http://www.ncbi.nlm.nih.gov/pubmed/27278681

Effects of Delta-9-Tetrahydrocannabinol and Cannabidiol on Cisplatin-Induced Neuropathy in Mice.

“Sativex, a cannabinoid extract with a 1 : 1 ratio of tetrahydocannabinol and cannabidiol, has been shown to alleviate neuropathic pain associated with chemotherapy.

This research examined whether tetrahydocannabinol or cannabidiol alone could attenuate or prevent cisplatin-induced tactile allodynia.

These data demonstrate that each of the major constituents of Sativex alone can achieve analgesic effects against cisplatin neuropathy.”

http://www.ncbi.nlm.nih.gov/pubmed/27214593

Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

“Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse.”

http://www.ncbi.nlm.nih.gov/pubmed/27186994

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Synthesis and pharmacological evaluation of new biphenylic derivatives as CB2 receptor ligands.

“Targeting type-2 cannabinoid receptor (CB2) is considered a feasible strategy to develop new drugs for the treatment of diseases like neuropathic pain, chronic inflammation, neurodegenerative disorders and cancer.

Such drugs are devoid of the undesired central side effects that are typically mediated by the CB1 receptor.

In this work we synthesized 18 biphenylic carboxamides as new CB2-selective ligands and evaluated their pharmacological profiles. The functional activity of these compounds is strongly influenced by the nature of the substituent at position 4′ and 5 of the biphenyl scaffold.

Position 5 seems to be responsible for the agonist or inverse agonist behaviour independently of the substituent in position 4′, with the exception of the methoxyl group which transforms both full agonists and inverse agonists into neutral antagonists.

This study provides a novel complete toolbox of CB2 functional modulators that derive from the same chemical scaffold. Such probes may be useful to investigate the biological role of CB2 receptors in cellular assays.”

http://www.ncbi.nlm.nih.gov/pubmed/27078864

Therapeutic potential of cannabinoids in trigeminal neuralgia.

“Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge to the clinicians. While the exact cause and pathology of this disorder is uncertain, it is thought that trigeminal neuralgia caused by irritation of the trigeminal nerve. This irritation results from damage due to the change in the blood vessels, the presence of a tumor or other lesions that cause the compression of the trigeminal root.

The pain of trigeminal neuralgia is characterized by unilateral pain attacks that start abruptly and last for varying periods of time from minutes to hours. The quality of pain is usually sharp, stabbing, lancinating, and burning. The attacks are initiated by mild stimuli such as light touch of the skin, eating, chewing, washing the face, brushing the teeth, and exposure to wind.

Although antiepileptic drug therapy may be beneficial in the treatment of trigeminal neuralgia, up to one-half of the patients become refractory or intolerant to these medications. At present there are few other effective drugs. In cases of lacking effect after pharmacotherapy, surgical options may be considered.

Currently there is growing amount of evidence to suggest that the psychoactive ingredient in cannabis and individual cannabinoids may be effective in alleviating neuropathic pain and hyperalgesia. Evidence suggests that cannabinoids may prove useful in pain modulation by inhibiting neuronal transmission in pain pathways.

Considering the pronounced antinociceptive effects produced by cannabinoids, they may be a promising therapeutic approach for the clinical management of trigeminal neuralgia.”

http://www.ncbi.nlm.nih.gov/pubmed/15578967

The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice.

“The activation of cannabinoid 2 receptors (CB2R) attenuates chronic pain, but the role played by carbon monoxide synthesized by the inducible heme oxygenase 1 (HO-1) on the anti-nociceptive effects produced by a selective CB2R agonist, JWH-015, during painful diabetic neuropathy remains unknown.

The activation of HO-1 enhanced the anti-nociceptive effects of JWH-015 in diabetic mice, suggesting that coadministration of JWH-015 with CORM-2 or CoPP might be an interesting approach for the treatment of painful diabetic neuropathy in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/27020787

Cannabinoids: Medical implications.

“Herbal cannabis has been used for thousands of years for medical purposes.

With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored.

While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy.

While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards.

Where medical cannabis is legal, patients typically see a physician who “certifies” that a benefit may result.

Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis.

Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

Key messages The medical disorders with the current best evidence that supports a benefit for cannabinoid use are the following: multiple sclerosis patient-reported symptoms of spasticity (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis central pain or painful spasms (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis bladder frequency (nabiximols), and chronic cancer pain/neuropathic pain (nabiximols and smoked THC).

Participating physicians should be knowledgeable about cannabinoids, closely look at the risk/benefit ratio, and consider certain important criteria in selecting a patient, such as: age, severity, and nature of the medical disorder, prior or current serious psychiatric or substance use disorder, failure of standard medical therapy as well as failure of an approved cannabinoid, serious underlying cardiac/pulmonary disease, agreement to follow-up visits, and acceptance of the detailed explanation of potential adverse risks.

The normal human endocannabinoid system is important in the understanding of such issues as normal physiology, cannabis use disorder, and the development of medications that may act as agonists or antagonists to CB1 and CB2.

By understanding the endocannabinoid system, it may be possible to enhance the beneficial effects of cannabinoid-related medication, while reducing the harmful effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26912385

Cannabinoids and autoimmune diseases: A systematic review.

“Cannabinoids have shown to have a variety effects on body systems. Through CB1 and CB2 receptors, amongst other, they exert an effect by modulating neurotransmitter and cytokine release.

Current research in the role of cannabinoids in the immune system shows that they possess immunosuppressive properties. They can inhibit proliferation of leucocytes, induce apoptosis of T cells and macrophages and reduce secretion of pro-inflammatory cytokines.

In mice models, they are effective in reducing inflammation in arthritis, multiple sclerosis, have a positive effect on neuropathic pain and in type 1 diabetes mellitus.

They are effective as treatment for fibromyalgia and have shown to have anti-fibrotic effect in scleroderma.

Studies in human models are scarce and not conclusive and more research is required in this field.

Cannabinoids can be therefore promising immunosuppressive and anti-fibrotic agents in the therapy of autoimmune disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26876387

http://www.thctotalhealthcare.com/category/autoimmune-disease/

Medicinal cannabis.

“A number of therapeutic uses of cannabis and its derivatives have been postulated from preclinical investigations.

Possible clinical indications include spasticity and pain in multiple sclerosis, cancer-associated nausea and vomiting, cancer pain and HIV neuropathy.

Controversies lie in how to produce, supply and administer cannabinoid products.

Introduction of cannabinoids therapeutically should be supported by a regulatory and educational framework that minimises the risk of harm to patients and the community.

The Regulator of Medicinal Cannabis Bill 2014 is under consideration in Australia to address this.

Nabiximols is the only cannabinoid on the Australian Register of Therapeutic Goods at present, although cannabidiol has been recommended for inclusion in Schedule 4.”

http://www.ncbi.nlm.nih.gov/pubmed/26843715

“There is some evidence of therapeutic benefit for cannabis products in defined patient populations.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674028/