Limited Access to a High Fat Diet Alters Endocannabinoid Tone in Female Rats.

Image result for frontiers in neuroscience

“Emerging evidence suggest an impaired endocannabinoid activity in the pathophysiology of binge eating disorder (BED). Herein, we investigated whether endocannabinoid tone could be modified as a consequence of dietary-induced binge eating in female rats.

For this purpose, brain levels of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), as well as two endocannabinoid-like lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), were assessed in different brain areas involved in the hedonic feeding (i.e., prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and hypothalamus).

The brain density of cannabinoid type-1 receptors (CB1) was also evaluated. Furthermore, we determined plasma levels of leptin, ghrelin, and corticosterone hormones, which are well-known to control the levels of endocannabioids and/or CB1 receptors in the brain.

To induce binge eating behavior, rats were subject to an intermittent and limited access to a high fat diet (HFD) (margarine). Three experimental groups were used, all with ad libitum access to chow: control (CTRL), with no access to margarine; low restriction (LR), with 2 h margarine access 7 days/week; high restriction (HR), with 2 h margarine access 3 days/week. Bingeing was established when margarine intake in the HR group exceeded that of the LR group.

Our results show that, compared to CTRL, AEA significantly decreased in the caudate putamen, amygdala, and hippocampus of HR group. In contrast, 2-AG significantly increased in the hippocampus while OEA decreased in the hypothalamus. Similar to the HR group, AEA and OEA decreased respectively in the amygdala and hypothalamus and 2-AG increased in the hippocampus of LR group. Moreover, LR group also had AEA decreased in the prefrontal cortex and increased in the nucleus accumbens. In both groups we found the same reduction of CB1 receptor density in the prefrontal cortex compared to CTRL. Also, LR and HR groups showed alterations in both ghrelin and corticosterone levels, while leptin remained unaltered.

In conclusion, our findings show a modified endocannabinoid tone due to margarine exposure, in several brain areas that are known to influence the hedonic aspect of food. Even if not uniquely specific to binge eating, margarine-induced changes in endocannabinoid tone could contributes to the development and maintenance of this behavior.”

https://www.ncbi.nlm.nih.gov/pubmed/29456490

https://www.frontiersin.org/articles/10.3389/fnins.2018.00040/full

Changes in the Peripheral Endocannabinoid System as a Risk Factor for the Development of Eating Disorders.

Image result for Endocr Metab Immune Disord Drug Targets.

“Eating Disorder (ED) is characterized by persistently and severely disturbed eating behaviours. They arise from a combination of long-standing behavioural, emotional, psychological, interpersonal, and social factors and result in insufficient nutrient ingestion and/or adsorption. The three main EDs are: anorexia nervosa, bulimia nervosa, and binge eating disorder. We review the role of peripheral endocannabinoids in eating behaviour.

DISCUSSION:

The neuronal pathways involved in feeding behaviours are closely related to catecholaminergic, serotoninergic and peptidergic systems. Accordingly, feeding is promoted by serotonin, dopamine, and prostaglandin and inhibited by neuropeptide Y, norepinephrine, GABA, and opioid peptides. The endocannabinoid system plays a role in EDs, and multiple lines of evidence indicate that the cannabinoid signalling system is a key modulatory factor of the activity in the brain areas involved in EDs as well as in reward processes.

CONCLUSION:

Besides their central role in controlling food behaviours, peripheral cannabinoids are also involved in regulating adipose tissue and insulin signalling as well as cell metabolism in peripheral tissues such as liver, pancreas, fatty tissue, and skeletal muscle. Altogether, these data indicate that peripheral cannabinoids can provide new therapeutic targets not only for EDs but also for metabolic disease.”

https://www.ncbi.nlm.nih.gov/pubmed/29437028

The therapeutic potential of targeting the peripheral endocannabinoid/CB1 receptor system.

European Journal of Internal Medicine

“Endocannabinoids (eCBs) are internal lipid mediators recognized by the cannabinoid-1 and -2 receptors (CB1R and CB2R, respectively), which also mediate the different physiological effects of marijuana. The endocannabinoid system, consisting of eCBs, their receptors, and the enzymes involved in their biosynthesis and degradation, is present in a vast number of peripheral organs. In this review we describe the role of the eCB/CB1R system in modulating the metabolism in several peripheral organs. We assess how eCBs, via activating the CB1R, contribute to obesity and regulate food intake. In addition, we describe their roles in modulating liver and kidney functions, as well as bone remodeling and mass. Special importance is given to emphasizing the efficacy of the recently developed peripherally restricted CB1R antagonists, which were pre-clinically tested in the management of energy homeostasis, and in ameliorating both obesity- and diabetes-induced metabolic complications.”

https://www.ncbi.nlm.nih.gov/pubmed/29336868

Peripheral modulation of the endocannabinoid system in metabolic disease.

Cover image

“Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease.

Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells.

In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes.

Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease.

Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype.

This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.”

Prospects for the Use of Cannabinoid Receptor Ligands for the Treatment of Metabolic Syndrome and Atherosclerosis: Analysis of Experimental and Clinical Data.

Image result for vestn ross akad med nauk.

“An antagonist of central cannabinoid CB1 receptors rimonabant causes weight loss in patients with obesity and metabolic syndrome, improves blood lipid parameters, increases the adiponectin level, decreases the rate of glucose and glycosylated hemoglobin in patients with diabetes mellitus type-2. However, rimonabant adverse effects include depression, anxiety, nausea, and dizziness which are apparently due to the blockade of central CB1 receptors.

In mice with a high-calorie diet, we defined that the blockade of peripheral CB1 receptors prevents obesity, steatosis of the liver, improves lipid and carbohydrate metabolism. Experimental studies suggest that peripheral CB2 receptor agonists have antiatherogenic effect. To validate the expediency of clinical research of CB2 receptor agonists in patients with atherosclerosis the comparative analysis of antiatherogenic properties of cannabinoids should be performed. In addition, experiments are needed on the combination use of cannabinoids with well-known antiatherogenic agents, such as statins.”

Novel Peripherally Restricted Cannabinoid 1 Receptor Selective Antagonist TXX-522 with Prominent Weight-Loss Efficacy in Diet Induced Obese Mice.

 Image result for frontiers in pharmacology

“The clinical development of the first generation of globally active cannabinoid 1 receptor (CB1R) antagonists was suspended because of their adverse neuropsychiatric effects. Selective blockade of peripheral CB1Rs has the potential to provide a viable strategy for the treatment of severe obesity while avoiding these central nervous system side effects.

In the current study, a novel compound (TXX-522) was rationally designed based on the parent nucleus of a classical CB1R-selective antagonist/inverse agonist, rimonabant (SR141716A).

TXX-522 showed good binding, CB1R-selectivity (over the CB2R), and functional antagonist activities in a range of in vitro molecular and cellular assays.

In vivo analysis of the steady state distribution of TXX-522 in the rat brain and blood tissues and the assay of its functional effects on CB1R activity collectively showed that TXX-522 showed minimal brain penetration. Moreover, the in vivo pharmacodynamic study further revealed that TXX-522 had good oral bioavailability and a potent anti-obesity effect, and ameliorated insulin resistance in high-fat diet-induced obese mice. No impact on food intake was observed in this model, confirming the limited brain penetration of this compound.

Thus, the current study indicates that TXX-522 is a novel and potent peripherally acting selective CB1R antagonist with the potential to control obesity and related metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29051736

https://www.frontiersin.org/articles/10.3389/fphar.2017.00707/full

Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring.

Image result for british journal of nutrition

“Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes.

We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development.

Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS’s components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups.

The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.”

https://www.ncbi.nlm.nih.gov/pubmed/29110748

https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/perinatal-maternal-highfat-diet-induces-early-obesity-and-sexspecific-alterations-of-the-endocannabinoid-system-in-white-and-brown-adipose-tissue-of-weanling-rat-offspring/6BA3A77DE45A1537E0BC182E83EF07F0

Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood.

The Journal of Nutritional Biochemistry

“Early life inadequate nutrition triggers developmental adaptations and adult chronic disease.

Maternal high-fat (HF) diet promotes visceral obesity and hypothalamic leptin resistance in male rat offspring at weaning and adulthood.

Obesity is related to over active endocannabinoid system (ECS). The ECS consists mainly of endogenous ligands, cannabinoid receptors (CB1 and CB2), and the enzymes fatty acid anandamide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

We hypothesized that perinatal maternal HF diet would regulate offspring ECS in hypothalamus and brown adipose tissue (BAT) at birth, prior to visceral obesity development, and program food preference and energy expenditure of adult offspring.

In conclusion, maternal HF diet alters ECS components and energy metabolism targets in hypothalamus and BAT of offspring at birth, in a sex-specific manner, which may contribute for hyperphagia, food preference and higher adiposity later in life.”

https://www.ncbi.nlm.nih.gov/pubmed/29102876

http://www.sciencedirect.com/science/article/pii/S0955286317303042?via%3Dihub

Novel Peripherally Restricted Cannabinoid 1 Receptor Selective Antagonist TXX-522 with Prominent Weight-Loss Efficacy in Diet Induced Obese Mice.

 Image result for frontiers pharmacology

“The clinical development of the first generation of globally active cannabinoid 1 receptor (CB1R) antagonists was suspended because of their adverse neuropsychiatric effects. Selective blockade of peripheral CB1Rs has the potential to provide a viable strategy for the treatment of severe obesity while avoiding these central nervous system side effects.

In the current study, a novel compound (TXX-522) was rationally designed based on the parent nucleus of a classical CB1R-selective antagonist/inverse agonist, rimonabant (SR141716A). Docking assays indicate that TXX-522 was bound with the CB1R in a mode similar to that of SR141716A. TXX-522 showed good binding, CB1R-selectivity (over the CB2R), and functional antagonist activities in a range of in vitro molecular and cellular assays.

In vivo analysis of the steady state distribution of TXX-522 in the rat brain and blood tissues and the assay of its functional effects on CB1R activity collectively showed that TXX-522 showed minimal brain penetration. Moreover, the in vivopharmacodynamic study further revealed that TXX-522 had good oral bioavailability and a potent anti-obesity effect, and ameliorated insulin resistance in high-fat diet-induced obese mice. No impact on food intake was observed in this model, confirming the limited brain penetration of this compound.

Thus, the current study indicates that TXX-522 is a novel and potent peripherally acting selective CB1R antagonist with the potential to control obesity and related metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29051736

https://www.frontiersin.org/articles/10.3389/fphar.2017.00707/full

Cannabis in fat: high hopes to treat obesity.

Image result for jci journal

“Cannabinoid receptor type-1 (CB1s) is known to have a substantial impact on the regulation of energy metabolism via central and peripheral mechanisms. In this issue of the JCI, Ruiz de Azua and colleagues provide important insights into the regulation of adipocyte physiology by CB1. Mice with adipocyte-specific deletion of the CB1-encoding gene had an overall improved metabolic profile in addition to reduced body weight and total adiposity. These changes were associated with an increase in sympathetic tone of the adipose tissue and expansion of activated macrophages, both of which occurred prior to changes in body weight, lending support to a causal relationship between loss of CB1 in adipocytes and systemic metabolic changes. This work identifies adipocyte CB1s as a potential novel peripheral target for affecting systemic metabolism with diminished CNS effects.”

https://www.ncbi.nlm.nih.gov/pubmed/29035279

https://www.jci.org/articles/view/97042