Very low doses of delta 8-THC increase food consumption and alter neurotransmitter levels following weight loss.

“We have investigated the effect of 0.001 mg/kg delta(8)-tetrahydrocannabinol (THC) on food consumption, cognitive function, and neurotransmitters in mice…

Cognitive function showed a tendency to improve in the THC-treated mice…

Delta(8)-THC increased food intake significantly more than did delta(9)-THC, while performance and activity were similar.

Thus, delta(8)-THC (0.001 mg/kg) caused increased food consumption and tendency to improve cognitive function, without cannabimimetic side effects.

Hence, a low dose of THC might be a potential therapeutic agent in the treatment of weight disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/15099912

A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

Logo of nutrients

“This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR)…

The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.”

http://www.ncbi.nlm.nih.gov/pubmed/25493943

“Cannabis sativa L., also commonly called industrial hemp seed, is historically an important source of food, fibre, dietary oil and medicine; the seed contains about 30% oil and 25% protein…

Proteins from both plant and animal sources, including those of hemp seed, have been isolated and recognized as essential sources of bioactive peptides capable of exerting various in vitro and in vivo activities, such as antioxidant, antihypertensive, antimicrobial, opioid, antithrombotic, hypocholesterolemic, appetite-reducing, mineral-binding, immunomodulatory and cytomodulatory…

HMH may serve as an important ingredient to formulate antioxidant diets with potential therapeutic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276990/

http://www.thctotalhealthcare.com/category/hypertension-high-blood-pressure/

The endocannabinoid system in obesity and type 2 diabetes.

“Endocannabinoids (ECs) are defined as endogenous agonists of cannabinoid receptors type 1 and 2 (CB1 and CB2). ECs, EC anabolic and catabolic enzymes and cannabinoid receptors constitute the EC signalling system. This system participates in the control of lipid and glucose metabolism at several levels, with the possible endpoint of the accumulation of energy as fat.

Following unbalanced energy intake, however, the EC system becomes dysregulated, and in most cases overactive, in several organs participating in energy homeostasis, particularly, in intra-abdominal adipose tissue. This dysregulation might contribute to excessive visceral fat accumulation and reduced adiponectin release from this tissue, and to the onset of several cardiometabolic risk factors that are associated with obesity and type 2 diabetes.

This phenomenon might form the basis of the mechanism of action of CB1 antagonists/inverse agonists, recently developed by several pharmaceutical companies as adjuvants to lifestyle modification for weight reduction, glycaemic control and dyslipidaemia in obese and type 2 diabetes patients.

It also helps to explain why some of the beneficial actions of these new therapeutics appear to be partly independent from weight loss.”

http://www.ncbi.nlm.nih.gov/pubmed/18563385

http://www.thctotalhealthcare.com/category/obesity-2/

http://www.thctotalhealthcare.com/category/diabetes/

Minireview: From the Bench, Toward the Clinic: Therapeutic Opportunities for Cannabinoid Receptor Modulation.

The effects of cannabinoids have been known for centuries and over the past several decades two G-protein coupled receptors, CB1 and CB2, have been identified that are responsible for their activity.

Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery characterized, and synthetic agents have been designed to modulate these receptors.

Selective agents including agonists, antagonists, inverse agonists and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone.

As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated.

The CB1 receptor while ubiquitous is densely expressed in the brain and CB2 is largely found on cells of immune origin.

This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability.

In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic β-cells, insulin resistance and feeding behavior leading toward obesity.

The role of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converges at inflammatory cell activation thereby providing an opportunity for intervention.

Lastly, CB2 modulation is discussed in the context of an experimental model of post-menopausal osteoporosis.

Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents.”

Renal Effects of Chronic Pharmacological Manipulation of CB2 in Rats with Diet Induced Obesity.

“In diabetic nephropathy CB2 agonism reduces albuminuria and podocyte loss; however the role of CB2 in obesity-related nephropathy is unknown. The aim of this study was to determine the role of CB2 in a model of diet-induced obesity (DIO)…

This study demonstrates that while agonism of CB2 with AM1241 treatment for six weeks does not reduce weight gain in obese rats, it leads to improvements in obesity related renal dysfunction.”

http://www.ncbi.nlm.nih.gov/pubmed/25537025

Alexandros Makriyannis is a professor in the Department of Medicinal Chemistry at Northeastern University, where his research group has synthesized many new compounds with cannabinoid activity.

Chronic administration with AM251 improves albuminuria and renal tubular structure in obese rats.

“Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established, however the direct effects of CB1 antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB1 antagonist AM251 in a model of DIO.

Antagonism of CB1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats.

Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGF, TGFb1 and collagen IV in the kidney.

This study demonstrates that treatment with CB1 antagonist AM251 improves renal outcomes in obese rats.”

http://www.ncbi.nlm.nih.gov/pubmed/25804605

Alexandros Makriyannis is a professor in the Department of Medicinal Chemistry at Northeastern University, where his research group has synthesized many new compounds with cannabinoid activity… AM-251 — an inverse agonist at the CB1 cannabinoid receptor that is structurally related to SR141716A (rimonabant), but has a higher binding affinity with a Ki value of 7.5nM.”  http://en.wikipedia.org/wiki/List_of_AM_cannabinoids

In Vivo imaging of the cannabinoid CB1 receptor with positron emission tomography.

“Positron emission tomography (PET) can visualize and quantify receptors and other targets in the living human brain, and recent progress in radioligand development has enabled measurement of cannabinoid CB1 receptors. Cannabinoid CB1 receptors have been implicated in multiple human diseases, such as obesity, mood disorders, and addiction. First in vivo human studies have shown distinctive spatial and temporal alterations in cannabinoid CB1 receptor binding in addictive disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/25788235

Cannabis use in relation to obesity and insulin resistance in the inuit population.

“OBJECTIVE:

To ascertain the relationship between cannabis use, obesity, and insulin resistance…

Cannabis use was highly prevalent in the study population and was statistically associated with lower body mass index (BMI)

CONCLUSIONS:

Cannabis use was associated with lower BMI, and such an association did not occur through the glucose metabolic process or related inflammatory markers. The association between cannabis use and insulin resistance was mediated through its influence on weight.”

http://www.ncbi.nlm.nih.gov/pubmed/25557382

Two non-psychoactive cannabinoids reduce intra-cellular lipid levels and inhibit hepatosteatosis.

“Obesity and associated metabolic syndrome have quickly become a pandemic and a major detriment to human health globally.

The presence of non-alcoholic fatty liver disease (NAFLD; hepatosteatosis) in obesity has been linked to the worsening of the metabolic syndrome, including the development of insulin resistance and cardiovascular disease. Currently, there are few options to treat NAFLD, including life style changes and insulin sensitizers.

Recent evidence suggests that the cannabinoids Δ9-tetrahydrocannabivarin (THCV) and cannabidiol (CBD) improve insulin sensitivity; we aimed at studying their effects on lipid levels…

THCV and CBD directly reduce accumulated lipid levels in vitro in a hepatosteatosis model and adipocytes.

…these cannabinoids are able to increase yolk lipid mobilization and inhibit the development of hepatosteatosis respectively.

CONCLUSIONS:

Our results suggest that THCV and CBD might be used as new therapeutic agents for the pharmacological treatment of obesity- and metabolic syndrome-related NAFLD/hepatosteatosis.”

http://www.ncbi.nlm.nih.gov/pubmed/25595882

http://www.thctotalhealthcare.com/category/obesity-2/

Neural Effects of Cannabinoid CB1 Neutral Antagonist Tetrahydrocannabivarin (THCv) on Food Reward and Aversion in Healthy Volunteers.

“Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders.

We previously showed that the cannabis receptor (CB1) inverse agonist rimonabant, an anti-obesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses. Unlike rimonabant, tetrahydrocannabivarin (THCv) is a neutral CB1 receptor antagonist and may therefore produce different modulations of the neural reward system…

Conclusions: Our findings are the first to show that treatment with the CB1 neutral antagonist THCv increases neural responding to rewarding and aversive stimuli.

This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/25542687

http://www.thctotalhealthcare.com/category/obesity-2/