Smoking cannabis could reduce the risk of diabetes by controlling blood sugar

“People who regularly smoke cannabis may have a lower risk of developing diabetes, new research suggests.”
 
Marijuana users had significantly lower levels of the hormone insulin - indicating better blood sugar control“Marijuana users had significantly lower levels of the hormone insulin – indicating better blood sugar control… could pave the way for the development of treatments using the plant’s compound active ingredient, tetrahydrocannabinol, or THC.

Marijuana users had 16% lower fasting insulin levels than non-users.

They were also less likely to be insulin resistant and had smaller waists.

Previous research has found cannabis smokers are less likely to be obese.”

Read more: http://www.dailymail.co.uk/health/article-2324743/Smoking-cannabis-reduce-risk-diabetes-controlling-blood-sugar.html 

The Impact of Marijuana Use on Glucose, Insulin, and Insulin Resistance among US Adults – The American Journal of Medicine

“There are limited data regarding the relationship between cannabinoids and metabolic processes. Epidemiologic studies have found lower prevalence rates of obesity and diabetes mellitus in marijuana users compared with people who have never used marijuana, suggesting a relationship between cannabinoids and peripheral metabolic processes. To date, no study has investigated the relationship between marijuana use and fasting insulin, glucose, and insulin resistance…

Conclusions

We found that marijuana use was associated with lower levels of fasting insulin and HOMA-IR, and smaller waist circumference…”

http://www.amjmed.com/article/S0002-9343(13)00200-3/fulltext

Smoking Marijuana May Lower Diabetes and Obesity Risk

“Marijuana may lower the risk of diabetes, according to a new study that revealed people who regularly smoked marijuana had significantly better blood sugar control.”

marijuana, cannabis, drug, addiction, weed
 
“Researchers explained that regular marijuana users had significantly lower fasting insulin and were less likely to be insulin resistant, indicating they had better sugar control.

The study published in The American Journal of Medicine included data from 4,657 patients who had answered questions on drug use.  According to the study, 579 of the patients were current marijuana users, 1,975 had used marijuana in the past and 2,103 had never used.  Researchers measured all participants’ fasting insulin and glucose levels.

Researchers found that regular marijuana users had 16 percent lower fasting insulin levels than people who had never smoke marijuana.  Marijuana users were also more likely to have a smaller waist circumference.  Previous studies have linked a large waist circumference to diabetes risk.

The study also found that participants who reported using marijuana in the past had lower levels of fasting insulin and HOMA-IR and higher levels of high-density lipoprotein cholesterol (HDL-C).  However, these correlations were weaker in people who reported using marijuana at least once, but not in the past thirty days.  The findings suggest that the impact of marijuana use on insulin and insulin resistance exists during periods of recent use.

For centuries, marijuana has been used to relieve pain, boost mood and increase appetite.  Now, medical marijuana is often used by patients suffering cancer, multiple sclerosis and other painful conditions.

If the latest findings are confirmed, researchers said the study could lead to the development of new diabetes treatments using marijuana’s compound active ingredient, tetrahydrocannabinol, or THC.

Past epidemiologic studies revealed that marijuana users had lower rates of obesity and diabetes mellitus compared to people who have never used the drug.  Researchers said that previous findings suggest a link between cannabinoids and peripheral metabolic processes, but the latest study was the first to look at the relationship between marijuana use and fasting insulin, glucose, and insulin resistance.

“It is possible that the inverse association in fasting insulin levels and insulin resistance seen among current marijuana users could be in part due to changes in usage patterns among those with a diagnosis of diabetes (i.e., those with diabetes may have been told to cease smoking). However, after we excluded those subjects with a diagnosis of diabetes mellitus, the associations between marijuana use and insulin levels, HOMA-IR, waist circumference, and HDL-C were similar and remained statistically significant,” researcher Dr. Elizabeth Penner, said in a news release.

“These are indeed remarkable observations that are supported, as the authors note, by basic science experiments that came to similar conclusions,” American Journal of Medicine editor-in-chief Dr. Joseph Alpert wrote in an accompanying editorial.

“We desperately need a great deal more basic and clinical research into the short- and long-term effects of marijuana in a variety of clinical settings such as cancer, diabetes, and frailty of the elderly,” continues Alpert.” I would like to call on the NIH and the DEA to collaborate in developing policies to implement solid scientific investigations that would lead to information assisting physicians in the proper use and prescription of THC in its synthetic or herbal form,” he added.”

http://www.counselheal.com/articles/5381/20130515/smoking-marijuana-lower-diabetes-obesity-risk.htm

Cannabis and Δ(9)-tetrahydrocannabinol (THC) for weight loss?

“Obesity is one of the highest preventable causes of morbidity and mortality in the developed world. It has been well known for a long time that exposure to cannabis produces an increase of appetite (a phenomenon referred to as the ‘munchies’).

This phenomenon led to an exploration of the role of the endocannabinoid system in the regulation of obesity and associated metabolic syndrome. This effort subsequently led to the development of a successful therapeutic approach for obesity that consisted of blocking the cannabinoid CB(1) receptors using ligands such as Rimonabant in order to produce weight loss and improve metabolic profile. Despite being efficacious, Rimonabant was associated with increased rates of depression and anxiety and therefore removed from the market.

We recently discovered that the prevalence of obesity is paradoxically much lower in cannabis users as compared to non-users and that this difference is not accounted for by tobacco smoking status and is still present after adjusting for variables such as sex and age.

 Here, we propose that this effect is directly related to exposure to the Δ(9)-tetrahydrocannabinol (THC) present in cannabis smoke. We therefore propose the seemingly paradoxical hypothesis that THC or a THC/cannabidiol combination drug may produce weight loss and may be a useful therapeutic for the treatment of obesity and its complications.”

http://www.ncbi.nlm.nih.gov/pubmed/23410498

Endocannabinoids and obesity.

“A safe and effective antiobesity drug is needed to combat the global obesity epidemic. The discovery of cannabinoids from medicinal herbs has revealed the endocannabinoid system (ECS) in animals and humans, which regulates various physiological activities such as feeding, thermogenesis, and body weight (BW).

Although cannabinoid receptors 1 (CB1) antagonists have shown antiobesity efficacies in animal models and in the clinic, they failed to establish as a treatment due to their psychological side effects.

 Recent studies indicate that CB1 in various peripheral tissues may mediate some of the therapeutic effects of CB1 antagonists, such as improved lipid and glucose homeostasis.

 It rationalizes the development of compounds with limited brain penetration, for minimizing the side effects while retaining the therapeutic efficacies. A survey of the literature has revealed some controversies about how the ECS affects obesity. This review summarizes the research progresses and discusses some future perspectives.”

http://www.ncbi.nlm.nih.gov/pubmed/23374723

The role of the pancreatic endocannabinoid system in glucose metabolism.

“The endogenous cannabinoid system participates in the regulation of energy homeostasis, and this fact led to the identification of a new group of therapeutic agents for complicated obesity and diabetes. Cannabinoid receptor antagonists are now realities in clinical practice. The use of such antagonists for reducing body weight gain, lowering cholesterol and improving glucose homeostasis is based on the ability of the endocannabinoids to coordinately regulate energy homeostasis by interacting with central and peripheral targets, including adipose tissue, muscle, liver and endocrine pancreas. In this review we will analyse the presence of this system in the main cell types of the islets of Langerhans, as well as the physiological relevance of the endocannabinoids and parent acylethanolamides in hormone secretion and glucose homeostasis. We will also analyse the impact that these findings may have in clinical practice and the potential outcome of new therapeutic strategies for modulating glucose homeostasis and insulin/glucagon secretion.”

http://www.ncbi.nlm.nih.gov/pubmed/19285263

Presence of functional cannabinoid receptors in human endocrine pancreas.

“We examined the presence of functional cannabinoid receptors 1 and 2 (CB1, CB2) in isolated human islets, phenotyped the cells producing cannabinoid receptors and analysed the actions of selective cannabinoid receptor agonists on insulin, glucagon and somatostatin secretion in vitro. We also described the localisation on islet cells of: (1) the endocannabinoid-producing enzymes N-acyl-phosphatidyl ethanolamine-hydrolysing phospholipase D and diacylglycerol lipase; and (2) the endocannabinoid-degrading enzymes fatty acid amidohydrolase and monoacyl glycerol lipase.

RESULTS:

Human islets of Langerhans expressed CB1 and CB2 (also known as CNR1 and CNR2) mRNA and CB1 and CB2 proteins, and also the machinery involved in synthesis and degradation of 2-AG (the most abundant endocannabinoid, levels of which were modulated by glucose). Immunofluorescence revealed that CB1 was densely located in glucagon-secreting alpha cells and less so in insulin-secreting beta cells. CB2 was densely present in somatostatin-secreting delta cells, but absent in alpha and beta cells. In vitro experiments revealed that CB1 stimulation enhanced insulin and glucagon secretion, while CB2 agonism lowered glucose-dependent insulin secretion, showing these cannabinoid receptors to be functional.

CONCLUSIONS/INTERPRETATION:

Together, these results suggest a role for endogenous endocannabinoid signalling in regulation of endocrine secretion in the human pancreas.”

http://www.ncbi.nlm.nih.gov/pubmed/18092149

Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia.

“Cannabinoid CB(1) receptor blockade decreases weight and hyperinsulinemia in obese animals and humans in a way greatly independent from food intake.

The objective of this study was to investigate the regulation and function of the endocannabinoid system in adipocytes and pancreatic beta-cells.

Endocannabinoid enzyme and adipocyte protein expression, and endocannabinoid and insulin levels were measured.

RESULTS:

Endocannabinoids are present in adipocytes with levels peaking before differentiation, and in RIN-m5F beta-cells, where they are under the negative control of insulin. Chronic treatment of adipocytes with insulin is accompanied by permanently elevated endocannabinoid signaling, whereas culturing of RIN-m5F beta-cells in high glucose transforms insulin down-regulation of endocannabinoid levels into up-regulation. Epididymal fat and pancreas from mice with diet-induced obesity contain higher endocannabinoid levels than lean mice. Patients with obesity or hyperglycemia caused by type 2 diabetes exhibit higher concentrations of endocannabinoids in visceral fat or serum, respectively, than the corresponding controls. CB(1) receptor stimulation increases lipid droplets and decreases adiponectin expression in adipocytes, and it increases intracellular calcium and insulin release in RIN-m5F beta-cells kept in high glucose.

CONCLUSIONS:

Peripheral endocannabinoid overactivity might explain why CB(1) blockers cause weight-loss independent reduction of lipogenesis, of hypoadiponectinemia, and of hyperinsulinemia in obese animals and humans.”

http://jcem.endojournals.org/content/91/8/3171.long

Marijuana-Like Compounds May Aid Array Of Debiliatiing Conditions Ranging From Parkinson’s Disease To Pain

“Oct. 27, 2004 — No longer a pipe dream, new animal research now indicates that marijuana-like compounds can aid a bevy of debilitating conditions, ranging from brain disorders such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease, to pain and obesity.

Research from California Pacific Medical Center in San Francisco points to the promise of marijuana-like treatments for those with the fatal brain disorder ALS, also known as Lou Gehrig’s disease.

“Our research indicates that select marijuana compounds, including THC, significantly slow the disease process and extend the life of mice with ALS,” says study author Mary Abood, PhD.

The study extends earlier work from Abood’s group that found that THC also can alleviate some ALS symptoms, like muscle spasms, in patients.

ALS wreaks its havoc by harming nerve cells that control muscles. As a consequence of the damage, an estimated 5,000 Americans afflicted annually experience progressive muscle weakness that can hinder movement, speech, even swallowing and breathing. New treatments for ALS are desperately needed…

“For the first time, our research shows the neuroprotective value of marijuana-like compounds in a well-established animal model of Parkinson’s disease,” says study author Andrea Giuffrida, PhD, of the University of Texas Health Science Center in San Antonio.

Parkinson’s afflicts some 1 million Americans. Symptoms include slowness of movement, muscle stiffness, and shaky tremors, which can harm a person’s ability to walk, talk, write, and eat. This havoc results from the death or injury of brain cells that produce the chemical dopamine.

“There are therapies that can help replenish depleted levels of dopamine and provide symptomatic relief, but none can reverse, prevent, or delay the progression of Parkinson’s disease,” says Giuffrida. “Our research shows that marijuana-like compounds may be able to answer this need.””

Read more: http://www.sciencedaily.com/releases/2004/10/041027102621.htm

 

Latest advances in cannabinoid receptor agonists.

“Since the discovery of cannabinoid receptors and their endogenous ligands in early 1990s, the endocannabinoid system has been shown to play a vital role in several pathophysiological processes. It has been targeted for the treatment of several diseases including neurodegenerative diseases (Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and MS), cancer, obesity, inflammatory bowel disease, neuropathic and inflammatory pain. The last decade has witnessed remarkable advances in the development of cannabinergic ligands displaying high selectivity and potency towards two subtypes of cannabinoid receptors, namely CB1 and CB2.”

 “…we highlight the latest advances made in the development of cannabinoid agonists and summarize recently disclosed, novel chemical scaffolds as CB-selective agonists…”

 

“CONCLUSIONS:

Our analysis reveals prolific patenting activity mainly in the CB2 selective agonist area. Limiting the BBB penetrability, thereby, leading to peripherally restricted CB1/CB2 agonists and enhancing CB2-selectivity emerge as likely prerequisites for avoidance of adverse central CB1 mediated side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/19939187