Pharmacophore-based virtual screening from phytocannabinoids as antagonist r-CB1

SpringerLink

“Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function.

The endocannabinoid system is related to obesity by increasing orexigenic signals and reducing satiety signals.

Cannabis sativa is a medicinal plant of polypharmaceutical potential that has been widely studied for various medicinal purposes.

The in silico evaluation of their natural cannabinoids (also called phytocannabinoids) for anti-obesity purpose stems from the existence of synthetic cannabinoid compounds that have already presented this result, but which did not guarantee patient safety.

In order to find new molecules from C. sativa phytocannabinoids, with the potential to interact peripherally with the pharmacological target cannabinoid receptor 1, a pharmacophore-based virtual screening was performed, including the evaluation of physicochemical, pharmacokinetic, toxicological predictions and molecular docking.

The results obtained from the ZINC12 database pointed to Zinc 69 (ZINC33053402) and Zinc 70 (ZINC19084698) molecules as promising anti-obesity agents. Molecular dynamics (MD) studies disclose that both complexes were stable by analyzing the RMSD (root mean square deviation) values, and the binding free energy values demonstrate that the selected structures can interact and inhibit their catalytic activity.”

https://pubmed.ncbi.nlm.nih.gov/35978141/

https://link.springer.com/article/10.1007/s00894-022-05219-3

The Endocannabinoid System and Eating Behaviours: a Review of the Current State of the Evidence

SpringerLink

“Purpose of the review: The endocannabinoid system (ENS) has emerged as an important factor in food intake and may have implications for nutrition research. The objective of the current report is to summarise the available evidence on the ENS and eating behaviour from both animal and human studies.

Recent findings: The literature reviewed demonstrates a clear link between the ENS and eating behaviours. Overall, studies indicate that 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA) via cannabinoid receptor-1 (CNR1) binding may stimulate hunger and food intake while oleylethanolamide (OEA) may inhibit hunger. Mechanisms of these associations are not yet well understood, although the evidence suggests that there may be interactions with other physiological systems to consider. Most studies have been conducted in animal models, with few human studies available. Additional research is warranted among human populations into the ENS and eating behaviour. Evaluation of relationships between variation in ENS genes and dietary outcomes is an important area for investigation.”

https://pubmed.ncbi.nlm.nih.gov/35980538/

https://link.springer.com/article/10.1007/s13668-022-00436-x

The Endocannabinoid System and Physical Activity-A Robust Duo in the Novel Therapeutic Approach against Metabolic Disorders

ijms-logo

“Rapidly increasing worldwide prevalence of obesity and related pathologies encompassing coronary heart disease, hypertension, metabolic syndrome, or type 2 diabetes constitute serious threats to global health and are associated with a significantly elevated risk of premature death. Considering the enormous burden of these pathologies, novel therapeutic and preventive patterns are indispensable.

Dysregulation of one of the most complex biological systems in the human body namely, the endocannabinoid system (ECS) may result in metabolic imbalance and development of insulin resistance, type 2 diabetes, or non-alcoholic fatty liver disease. Furthermore, many studies showed that physical exercises, depending on their type, intensity, and frequency, exert various alterations within the ECS.

Emerging evidence suggests that targeting the ECS via physical activity may produce robust beneficial effects on the course of metabolic pathologies. However, the data showing a direct correlation between the ECS and physical activity in the aspect of metabolic health are very scarce. Therefore, the aim of this review was to provide the most up-to-date state of knowledge about the interplay between the ECS activity and physical exercises in the novel therapeutic and preventive approach toward metabolic pathologies.

We believe that this paper, at least in part, will fulfill the existing gap in knowledge and encourage researchers to further explore this very complex yet interesting link between the ECS, its action in physical activity, and subsequent positive outcomes for metabolic health.”

https://pubmed.ncbi.nlm.nih.gov/35328503/

“To the best of our knowledge, this is the first review directly and comprehensively discussing the uncharted link between physical activity and its influence on the endocannabinoid signaling in the aspect of beneficial effects in the management of metabolic disorders. Considering the very alarming worldwide prevalence of these diseases as well as the unexplored potential of the topic, we believe that this paper, at least in part, will encourage researchers toward investigating this interesting, yet very complicated interplay. ECS and physical activity constitute robust and valuable therapeutic and preventive approaches that may significantly contribute to the decreased socioeconomic burden and the reduced annual number of patients suffering from obesity and other metabolic disorders. The future investigation should primarily encompass further discovery of the link between physical activity, alterations within endocannabinoid signaling and subsequently improved metabolic status of overweight, obese, and diabetic individuals.”

https://www.mdpi.com/1422-0067/23/6/3083/htm


“Exercise activates the endocannabinoid system”

https://pubmed.ncbi.nlm.nih.gov/14625449/

Weight loss outcomes are not compromised in bariatric patients using cannabis

SpringerLink

“Background: The legalization of cannabis in several states has led to increased documented use in the population. Bariatric surgery patients are no exception with estimates of anywhere from 6 to 8%. Cannabis is known to be associated with increased appetite, mood disorders, hyperphagia, and rarely, hyperemesis, which can potentially affect post-surgical weight loss. We aim to study the differences in bariatric surgery outcomes between cannabis users and non-users.

Results: A cohort of 364 sleeve gastrectomy patients met inclusion criteria, 31 (8.5%) CU and 333 (91.5%) non-CU. There was no difference in EWL between CU and non-CU at 1 week, 1 month, 3 months, 6 months, 9 months, 1 year, and 2 years. However, the CU group trended towards greater EWL at 3 years (52.9% vs. 38.1%, p = 0.094) and at 5 years (49.8% vs. 32.7%, p = 0.068). There were no significant differences between CU and non-CU with respect to either incidence or severity of PONV at one year after surgery or longer follow-up.

Conclusion: Cannabis users did not experience inferior weight loss after bariatric surgery despite common assumptions that appetite stimulation can lead to suboptimal weight loss outcomes. Our findings add to other work challenging this dogma. Larger, long-term, multicenter studies are warranted.”

https://pubmed.ncbi.nlm.nih.gov/35861881/

https://link.springer.com/article/10.1007/s00464-022-09453-x

Cannabis Extract Effects on Metabolic Parameters and Gut Microbiota Composition in a Mice Model of NAFLD and Obesity

logo

“Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver abnormalities and has been linked with metabolic syndrome hallmarks. Unfortunately, current treatments are limited.

This work aimed to elucidate the effects of three cannabis extracts on metabolic alteration and gut microbiota composition in a mouse model of NAFLD and obesity.

Male mice were fed with a high-fat diet (HFD) for 12 weeks. Following the establishment of obesity, the HFD-fed group was subdivided into HFD or HFD that was supplemented with one of three cannabis extracts (CN1, CN2, and CN6) for additional 8 weeks. Metabolic parameters together with intestinal microbiota composition were evaluated.

Except for several minor changes in gene expression, no profound metabolic effect was found due to cannabis extracts addition. Nevertheless, marked changes were observed in gut microbiota diversity and composition, with CN1 and CN6 exhibiting microbial abundance patterns that are associated with more beneficial outcomes.

Taken together, specific cannabis extracts’ addition to an HFD results in more favorable modifications in gut microbiota. Although no marked metabolic effect was disclosed, longer treatments duration and/or higher extracts concentrations may be needed. More research is required to ascertain this conjecture and to establish the influence of various cannabis extracts on host health in general and NAFLD in particular.”

https://pubmed.ncbi.nlm.nih.gov/35795290/

https://www.hindawi.com/journals/ecam/2022/7964018/

“Cannabis use is associated with reduced prevalence of non-alcoholic fatty liver disease: A cross-sectional study”

https://pubmed.ncbi.nlm.nih.gov/28441459/

β-Caryophyllene, a Dietary Cannabinoid, Protects Against Metabolic and Immune Dysregulation in a Diet-Induced Obesity Mouse Model

“Obesity is an abnormal or excessive accumulation of fat in the body that exacerbates metabolic and inflammatory processes, and impairs the health of afflicted individuals.

β-caryophyllene is a natural sesquiterpene that is a dietary cannabinoid with anti-inflammatory properties and potential activity against metabolic diseases.

In the present study, we evaluated the effect of β-caryophyllene on C57BL/6 mice using a diet-induced obesity model. Male mice were randomly assigned to the following groups over a 16-week period: (1) standard diet as lean control, (2) high-fat diet (HFD) as obese control, and (3) HFD + β-caryophyllene with β-caryophyllene at 50 mg/kg.

Treatment with β-caryophyllene improved various metabolic parameters including increased total body weight, fasting glucose levels, oral-glucose tolerance, insulin tolerance, fasting triglycerides, adipocyte hypertrophy, and liver macrovesicular steatosis. β-caryophyllene also modulated the levels and expression of immune response factors including adiponectin, leptin, insulin, interleukin-6, tumor necrosis factor-a, and Toll-like receptor-4.

Our data indicate that chronic supplementation with β-caryophyllene can improve relevant metabolic and immunological processes in obese mice.”

https://pubmed.ncbi.nlm.nih.gov/35792574/

“Beta-caryophyllene is a dietary cannabinoid.”  https://www.ncbi.nlm.nih.gov/pubmed/18574142

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

Cannabis use as a factor of lower corpulence in hepatitis C-infected patients: results from the ANRS CO22 Hepather cohort

“Background: Patients with chronic hepatitis C virus (HCV) infection are at greater risk of developing metabolic disorders. Obesity is a major risk factor for these disorders, and therefore, managing body weight is crucial. Cannabis use, which is common in these patients, has been associated with lower corpulence in various populations. However, this relationship has not yet been studied in persons with chronic HCV infection.

Methods: Using baseline data from the French ANRS CO22 Hepather cohort, we used binary logistic and multinomial logistic regression models to test for an inverse relationship between cannabis use (former/current) and (i) central obesity (i.e., large waist circumference) and (ii) overweight and obesity (i.e., elevated body mass index (BMI)) in patients from the cohort who had chronic HCV infection. We also tested for relationships between cannabis use and both waist circumference and BMI as continuous variables, using linear regression models.

Results: Among the 6348 participants in the study population, 55% had central obesity, 13.7% had obesity according to their BMI, and 12.4% were current cannabis users. After multivariable adjustment, current cannabis use was associated with lower risk of central obesity (adjusted odds ratio, aOR [95% confidence interval, CI]: 0.45 [0.37-0.55]), BMI-based obesity (adjusted relative risk ratio (aRRR) [95% CI]: 0.27 [0.19-0.39]), and overweight (aRRR [95% CI]: 0.47 [0.38-0.59]). This was also true for former use, but to a lesser extent. Former and current cannabis use were inversely associated with waist circumference and BMI.

Conclusions: We found that former and, to a greater extent, current cannabis use were consistently associated with smaller waist circumference, lower BMI, and lower risks of overweight, obesity, and central obesity in patients with chronic HCV infection. Longitudinal studies are needed to confirm these relationships and to assess the effect of cannabis use on corpulence and liver outcomes after HCV cure.”

https://pubmed.ncbi.nlm.nih.gov/35690798/

“To conclude, we found that both former and, to a greater extent, current cannabis use were consistently associated with lower waist circumference, lower BMI values, and lower risks of overweight, obesity, and central obesity in patients with chronic HCV infection.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-022-00138-9


Part of Springer Nature

Cannabis Use Is Inversely Associated with Overweight and Obesity in Hepatitis B Virus-Infected Patients (ANRS CO22 Hepather Cohort)

View details for Cannabis and Cannabinoid Research cover image“Chronic hepatitis B virus (HBV) infection may evolve into cirrhosis and hepatocellular carcinoma, and this progression may be accelerated by specific risk factors, including overweight and obesity. Although evidence for a protective effect of cannabis use on elevated body weight has been found for other populations, no data are available for HBV-infected patients. 

Aims: We aimed to identify risk factors (including cannabis use) for overweight and obesity in patients with HBV chronic infection. 

Methods: Using baseline data from the French ANRS CO22 Hepather cohort, we performed two separate analyses, one using “central obesity” (based on waist circumference) and the other “overweight” and “obesity” (based on body mass index) as outcomes. Logistic and multinomial regressions were used to model central obesity and overweight/obesity, respectively. 

Results: Among the 3706 patients in the study population, 50.8% had central obesity, 34.7% overweight, and 14.4% obesity. After multivariable adjustment, current cannabis use was associated with a 59% lower risk of central obesity compared with no lifetime use (adjusted odds ratio [95% CI]: 0.41 [0.24 to 0.70]). It was also associated with a 54% and 84% lower risk of overweight (adjusted relative risk ratio [95% CI]: 0.46 [0.27 to 0.76]) and obesity (0.16 [0.04 to 0.67]), respectively. 

Conclusions: Cannabis use was associated with lower risks of overweight and obesity in patients with HBV chronic infection. Future studies should test whether these potential benefits of cannabis and cannabinoid use translate into reduced liver disease progression in this high-risk population.”

https://pubmed.ncbi.nlm.nih.gov/34648718/

https://www.liebertpub.com/doi/10.1089/can.2021.0094

Novel CBG Derivatives Can Reduce Inflammation, Pain and Obesity

molecules-logo“Interest in CBG (cannabigerol) has been growing in the past few years, due to its anti-inflammatory properties and other therapeutic benefits.

Here we report the synthesis of three new CBG derivatives (HUM-223, HUM-233 and HUM-234) and show them to possess anti-inflammatory and analgesic properties.

In addition, HUM-234 also prevents obesity in mice fed a high-fat diet (HFD). The metabolic state of the treated mice on HFD is significantly better than that of vehicle-treated mice, and their liver slices show significantly less steatosis than untreated HFD or CBG-treated ones from HFD mice.

We believe that HUM-223, HUM-233 and HUM-234 have the potential for development as novel drug candidates for the treatment of inflammatory conditions, and in the case of HUM-234, potentially for obesity where there is a huge unmet need.”

https://pubmed.ncbi.nlm.nih.gov/34577072/

https://www.mdpi.com/1420-3049/26/18/5601

Cannabidiol – A phytocannabinoid that widely affects sphingolipid metabolism under conditions of brain insulin resistance

Biomedicine & Pharmacotherapy“Obesity-related insulin resistance (IR) and attenuated brain insulin signaling are significant risk factors for neurodegenerative disorders, e.g., Alzheimer’s disease. IR and type 2 diabetes correlate with an increased concentration of sphingolipids, a class of lipids that play an essential structural role in cellular membranes and cell signaling pathways.

Cannabidiol (CBD) is a nonpsychoactive constituent of Cannabis sativa plant that interacts with the endocannabinoidome. Despite known positive effects of CBD on improvement in diabetes and its aftermath, e.g., anti-inflammatory and anti-oxidant effects, there are no studies evaluating the effect of phytocannabinoids on the brain insulin resistance and sphingolipid metabolism. Our experiment was carried out on Wistar rats that received a high-fat diet and/or intraperitoneal CBD injections.

In our study, we indicated inhibition of de novo synthesis and salvage pathways, which resulted in significant changes in the concentration of sphingolipids, e.g., ceramide and sphingomyelin. Furthermore, we observed reduced brain IR and decreased tau protein phosphorylation what might be protective against neuropathologies development.

We believe that our research will concern a new possible therapeutic approach with Cannabis -plant derived compounds and within a few years, cannabinoids would be considered as prominent substances for targeting both metabolic and neurodegenerative pathologies.”

https://pubmed.ncbi.nlm.nih.gov/34435590/

“CBD might be an essential factor that leads to the reduction of brain IR. Thus, we believe that our research will concern a new possible therapeutic approach with a Cannabis-plant derived compounds and within a few years, those substances would be considered as prominent compounds for targeting both metabolic and neurodegenerative pathologies.”

https://www.sciencedirect.com/science/article/pii/S0753332221008404?via%3Dihub