Marijuana mouth spray for cancer patients tough to abuse – NBC

Image result for nbc news vitals

“The medical marijuana drug Sativex, which could be approved in the United States in the coming years as a treatment for pain relief, has little potential for abuse, experts say.

The British pharmaceutical company GW Pharmaceuticals is currently testing the drug, which is delivered as a mouth spray and called Sativex, in clinical trials. The company plans to seek U.S. Food and Drug Administration approval for the drug as a treatment for cancer pain when the trials are completed, likely sometime in 2014, a spokesperson for GW Pharmaceuticals told MyHealthNewsDaily.

The active ingredients in Sativex, known as cannabinoids, are derived from the cannabis plant. It is the first marijuana-based drug to be made by extracting the compounds from the plant, rather than synthesizing them. Two other drugs, Marinol and Cesamet, based on synthetic cannabinoids, were approved by the FDA in the 1980s.”

More: http://vitals.nbcnews.com/_news/2012/01/31/10280678-marijuana-mouth-spray-for-cancer-patients-tough-to-abuse?lite

Cannabis Science Extracts Kill Cancer Cells In Cancer Patients Being Treated

“Cannabis Science Extracts Kill Cancer Cells In Cancer Patients Being Treated Through Its Licensed Distributor Rockbrook

 Cannabis Science, Inc. (OTCBB: CBIS) a pioneering U.S. biotech company developing pharmaceutical cannabis (marijuana derivative) products, is pleased to announce that numerous patients are reporting that Cannabis Science extract treatments are killing cancer cells.

Unlike most conventional cancer treatments, cannabis has an outstanding safety profile, and patients in states with medical marijuana laws are able to make an informed decision to legally try various cannabis preparations to determine what is most effective for their particular condition.

Some of these scientifically informed patients have chosen to self-administer Cannabis Science extracts supplied by Rockbrook to treat their own cancers.

 Cannabis Science is delighted that patients are reporting dramatic improvements in their conditions, including basal cell carcinoma, non-small cell lung cancer accompanied by COPD (chronic obstructive pulmonary disease), ovarian cancer, and glioma.”

More: http://www.oncologyjournal.org/blogs/admin/2956-cannabis-science-extracts-kill-cancer-cells-cancer-patients-being-treated.html

http://www.businesswire.com/news/home/20110222007195/en/Cannabis-Science-Extracts-Kill-Cancer-Cells-Cancer#.VNEXMNX3-iw

Bay Area Researchers Claim Cannabis Can Cure Cancer

“Marijuana has been used for medicinal purposes–relieving stress and pain and fighting hunger and nausea–for centuries if not millennia. But now, a pair of doctors in San Francisco claim that they’ve compiled reliable data showing that a certain compound in cannabis–cannabidiol–may actually cure cancer.”

Bay Area Researchers Claim Cannabis Can Cure Cancer

“Unlike THC, the ingredient in marijuana that makes you feel stoned, cannabidiol is a non-toxic compound of the plant that has no psychoactive qualities, and it’s been the focus of an ongoing series of trials at the San Francisco-based California Pacific Medical Center. There, physicians Sean McAllister and Pierre Desprez claim they’ve successfully used cannabidiol to fight animal genes involved in the spread of cancer. Now they hope to be allowed to conduct anti-cancer research using cannabidiol on actual humans.”

Cannabinoid receptor systems: therapeutic targets for tumour intervention.

Image result for taylor & francis online

“The past decade has witnessed a rapid expansion of our understanding of the biological roles of cannabinoids and their cognate receptors. It is now certain that Delta9-tetrahydrocannabinol, the principle psychoactive component of the Cannabis sativa plant, binds and activates membrane receptors of the 7-transmembrane domain, G-protein-coupled superfamily.

Several putative endocannabinoids have since been identified, including anandamide, 2-arachidonyl glycerol and noladin ether. Synthesis of numerous cannabinomimetics has also greatly expanded the repertoire of cannabinoid receptor ligands with the pharmacodynamic properties of agonists, antagonists and inverse agonists.

Collectively, these ligands have proven to be powerful tools both for the molecular characterisation of cannabinoid receptors and the delineation of their intrinsic signalling pathways. Much of our understanding of the signalling mechanisms activated by cannabinoids is derived from studies of receptors expressed by tumour cells; hence, this review provides a succinct summary of the molecular pharmacology of cannabinoid receptors and their roles in tumour cell biology.

Moreover, there is now a genuine expectation that the manipulation of cannabinoid receptor systems may have therapeutic potential for a diverse range of human diseases. Thus, this review also summarises the demonstrated antitumour actions of cannabinoids and indicates possible avenues for the future development of cannabinoids as antitumour agents.” http://www.ncbi.nlm.nih.gov/pubmed/14640910

http://www.tandfonline.com/doi/abs/10.1517/14728222.7.6.749

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

Active Component Of Marijuana Has Anti-Cancer Effects, Study Suggests

“Guillermo Velasco and colleagues, at Complutense University, Spain, have provided evidence that suggests that cannabinoids such as the main active component of marijuana (THC) have anticancer effects on human brain cancer cells.

In the study, THC was found to induce the death of various human brain cancer cell lines and primary cultured human brain cancer cells by a process known as autophagy.

Consistent with the in vitro data, administration of THC to mice with human tumors decreased tumor growth and induced the tumor cells to undergo autophagy. As analysis of tumors from two patients with recurrent glioblastoma multiforme (a highly aggressive brain tumor) receiving intracranial THC administration showed signs of autophagy, the authors suggest that cannabinoid administration may provide a new approach to targeting human cancers.”  http://www.sciencedaily.com/releases/2009/04/090401181217.htm

“Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells” https://www.jci.org/articles/view/37948

 

Cannabinoids for Cancer Treatment: Progress and Promise

Cancer Research: 68 (2)

“Cannabinoid refers to a group of chemicals naturally found in the marijuana plant Cannabis sativa L. and includes compounds that are either structurally or pharmacologically similar to Δ(9)-tetrahydrocannabinol or those that bind to the cannabinoid receptors. Although anticancer effects of cannabinoids were shown as early as 1975 in Lewis lung carcinoma, renewed interest was generated little after the discovery of the cannabinoid system and cloning of the specific cannabinoid receptors.

Cannabinoids are a class of pharmacologic compounds that offer potential applications as antitumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival. In particular, emerging evidence suggests that agonists of cannabinoid receptors expressed by tumor cells may offer a novel strategy to treat cancer. Here, we review recent work that raises interest in the development and exploration of potent, nontoxic, and nonhabit forming cannabinoids for cancer therapy.”

Full Text: http://cancerres.aacrjournals.org/content/68/2/339.long

US Investigators Praise Cannabinoids As Chemo Treatment

“Cannabinoids inhibit cancer cell proliferation and should be clinically tested as chemotherapeutic agents, according to a review published in the January issue of the journal Cancer Research.

Investigators at the University of Wisconsin School of Medicine and Public Health reported that the administration of cannabinoids halts the spread of a wide range of cancers, including brain cancer, prostate cancer, breast cancer, lung cancer, skin cancer, pancreatic cancer, and lymphoma.

Researchers suggested that cannabinoids may offer significant advantages over standard chemotherapy treatments because the compounds are both non-toxic and can uniquely target malignant cells while ignoring healthy ones.

“Cannabinoids … offer potential applications as anti-tumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival,” authors concluded. “[T]here is overwhelming evidence to suggest that cannabinoids can be explored as chemotherapeutic agents for the treatment of cancer.””

Read more: http://norml.org/news/2008/01/31/us-investigators-praise-cannabinoids-as-chemo-treatment

Adjunctive nabilone in cancer pain and symptom management: a prospective observational study using propensity scoring.

“A prospective observational study assessed the effectiveness of adjuvant nabilone (Cesamet) therapy in managing pain and symptoms experienced by advanced cancer patients… When compared with those not taking nabilone, patients using this cannabinoid had a lower rate of starting nonsteroidal anti-inflammatory agents, tricyclic antidepressants, gabapentin, dexamethasone, metoclopramide, and ondansetron and a greater tendency to discontinue these drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/18402303

Cannabinoids As Cancer Hope

NORML - Working to reform marijuana laws

by Paul Armentano
Senior Policy Analyst
NORML | NORML Foundation

““Cannabinoids possess … anticancer activity [and may] possibly represent a new class of anti-cancer drugs that retard cancer growth, inhibit angiogenesis (the formation of new blood vessels) and the metastatic spreading of cancer cells.” So concludes a comprehensive review published in the October 2005 issue of the scientific journal Mini-Reviews in Medicinal Chemistry.

Not familiar with the emerging body of research touting cannabis’ ability to stave the spread of certain types of cancers? You’re not alone.

For over 30 years, US politicians and bureaucrats have systematically turned a blind eye to scientific research indicating that marijuana may play a role in cancer prevention — a finding that was first documented in 1974. That year, a research team at the Medical College of Virginia (acting at the behest of the federal government) discovered that cannabis inhibited malignant tumor cell growth in culture and in mice. According to the study’s results, reported nationally in an Aug. 18, 1974, Washington Post newspaper feature, administration of marijuana’s primary cannabinoid THC, “slowed the growth of lung cancers, breast cancers and a virus-induced leukemia in laboratory mice, and prolonged their lives by as much as 36 percent.”

Despite these favorable preclinical findings, US government officials dismissed the study (which was eventually published in the Journal of the National Cancer Institute in 1975), and refused to fund any follow-up research until conducting a similar — though secret — clinical trial in the mid-1990s. That study, conducted by the US National Toxicology Program to the tune of $2 million concluded that mice and rats administered high doses of THC over long periods experienced greater protection against malignant tumors than untreated controls.

Rather than publicize their findings, government researchers once again shelved the results, which only came to light after a draft copy of its findings were leaked in 1997 to a medical journal, which in turn forwarded the story to the national media.

Nevertheless, in the decade since the completion of the National Toxicology trial, the U.S. government has yet to encourage or fund additional, follow up studies examining the cannabinoids’ potential to protect against the spread cancerous tumors.

Fortunately, scientists overseas have generously picked up where US researchers so abruptly left off. In 1998, a research team at Madrid’s Complutense University discovered that THC can selectively induce apoptosis (program cell death) in brain tumor cells without negatively impacting the surrounding healthy cells. Then in 2000, they reported in the journal Nature Medicine that injections of synthetic THC eradicated malignant gliomas (brain tumors) in one-third of treated rats, and prolonged life in another third by six weeks.

In 2003, researchers at the University of Milan in Naples, Italy, reported that non-psychoactive compounds in marijuana inhibited the growth of glioma cells in a dose dependent manner and selectively targeted and killed malignant cancer cells.

The following year, researchers reported in the journal of the American Association for Cancer Research that marijuana’s constituents inhibited the spread of brain cancer in human tumor biopsies. In a related development, a research team from the University of South Florida further noted that THC can also selectively inhibit the activation and replication of gamma herpes viruses. The viruses, which can lie dormant for years within white blood cells before becoming active and spreading to other cells, are thought to increase one’s chances of developing cancers such as Karposis Sarcoma, Burkitts lymphoma, and Hodgkins disease.

More recently, investigators published pre-clinical findings demonstrating that cannabinoids may play a role in inhibiting cell growth of colectoral cancer, skin carcinoma, breast cancer, and prostate cancer, among other conditions. When investigators compared the efficacy of natural cannabinoids to that of a synthetic agonist, THC proved far more beneficial – selectively decreasing the proliferation of malignant cells and inducing apoptosis more rapidly than its synthetic alternative while simultaneously leaving healthy cells unscathed.

Nevertheless, US politicians have been little swayed by these results, and remain steadfastly opposed to the notion of sponsoring – or even acknowledging – this growing body clinical research, preferring instead to promote the unfounded notion that cannabis use causes cancer. Until this bias changes, expect the bulk of research investigating the use of cannabinoids as anticancer agents to remain overseas and, regrettably, overlooked in the public discourse.”

http://norml.org/component/zoo/category/cannabinoids-as-cancer-hope