Medical cannabis is effective for cancer-related pain: Quebec Cannabis Registry results

pubmed logo

“Objectives: To evaluate the safety and effectiveness of medical cannabis (MC) in reducing pain and concurrent medications in patients with cancer.

Methods: This study analysed data collected from patients with cancer who were part of the Quebec Cannabis Registry. Brief Pain Inventory (BPI), revised Edmonton Symptom Assessment System (ESAS-r) questionnaires, total medication burden (TMB) and morphine equivalent daily dose (MEDD) recorded at 3-month, 6-month, 9-month and 12-month follow-ups were compared with baseline values. Adverse events were also documented at each follow-up visit.

Results: This study included 358 patients with cancer. Thirteen out of 15 adverse events reported in 11 patients were not serious; 2 serious events (pneumonia and cardiovascular event) were considered unlikely related to MC. Statistically significant decreases were observed at 3-month, 6-month and 9-month follow-up for BPI worst pain (5.5±0.7 baseline, 3.6±0.7, 3.6±0.7, 3.6±0.8; p<0.01), average pain (4.1±0.6 baseline, 2.4±0.6, 2.3±0.6, 2.7±0.7; p<0.01), overall pain severity (3.7±0.5 baseline, 2.3±0.6, 2.3±0.6, 2.4±0.6; p<0.01) and pain interference (4.3±0.6 baseline, 2.4±0.6, 2.2±0.6, 2.4±0.7, p<0.01). ESAS-r pain scores decreased significantly at 3-month, 6-month and 9-month follow-up (3.7±0.6 baseline, 2.5±0.6, 2.2±0.6, 2.0±0.7, p<0.01). THC:CBD balanced strains were associated with better pain relief as compared with THC-dominant and CBD-dominant strains. Decreases in TMB were observed at all follow-ups. Decreases in MEDD were observed at the first three follow-ups.

Conclusions: Real-world data from this large, prospective, multicentre registry indicate that MC is a safe and effective complementary treatment for pain relief in patients with cancer. Our findings should be confirmed through randomised placebo-controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/37130724/

https://spcare.bmj.com/content/early/2023/04/11/spcare-2022-004003

Medicinal cannabis for Australian patients with chronic refractory pain including arthritis

pubmed logo

“Objectives: To examine the tolerability and effectiveness of medicinal cannabis prescribed to patients for chronic, refractory pain, with a subset analysis on arthritis.

Methods: This was an interim analysis of the CA Clinics Observational Study investigating self-reported adverse events (AEs) and changes in health-related quality of life (HRQoL) outcomes over time after commencing medicinal cannabis. Patients were prescribed medicinal cannabis by a medical practitioner, containing various ratios of Δ9-tetrahydrocannabinol (THC) and/or cannabidiol (CBD).

Results: The overall chronic pain cohort, and specifically the balanced CBD:THC products, were associated with significantly reduced pain intensity scores (p = 0.003, p = 0.025), with 22% of patients reporting a clinically meaningful reduction in pain intensity. Patients in the arthritis subset (n = 199) reported significantly reduced pain intensity scores (p = 0.005) overall, and specifically for those taking CBD-only (p = 0.018) and balanced products (p = 0.005). Other HRQoL outcomes, including pain interference and pain impact scores were significantly improved depending on the CBD:THC ratio. Products that contained a balanced ratio of CBD:THC were associated with improvements in the most number of PROMIS-29 domains. Approximately half (n = 364; 51%) of the chronic pain cohort experienced at least one AE, the most common being dry mouth (24%), somnolence (19%) or fatigue (12%). These findings were similar in the arthritis subset.

Discussion: Medicinal cannabis was observed to improve pain intensity scores and HRQoL outcomes in patients with chronic, refractory pain, providing real-world insights into medicinal cannabis’ therapeutic potential.”

https://pubmed.ncbi.nlm.nih.gov/37057257/

https://journals.sagepub.com/doi/10.1177/20494637221147115

Cannabidiol Treatment Shows Therapeutic Efficacy in a Rodent Model of Social Transfer of Pain in Pair-Housed Male Mice

pubmed logo

“Introduction: Prosocial behavior refers to sharing emotions and sensations such as pain. Accumulated data indicate that cannabidiol (CBD), a nonpsychotomimetic component of the Cannabis sativa plant, attenuates hyperalgesia, anxiety, and anhedonic-like behavior. Nevertheless, the role of CBD in the social transfer of pain has never been evaluated. In this study, we investigated the effects of acute systemic administration of CBD in mice that cohabited with a conspecific animal suffering from chronic constriction injury. Furthermore, we assessed whether repeated CBD treatment decreases hypernociception, anxiety-like behavior, and anhedonic-like responses in mice undergoing chronic constriction injury and whether this attenuation would be socially transferred to the partner. 

Materials and Methods: Male Swiss mice were Housed in pairs for 28 days. On the 14th day of living together, animals were then divided into two groups: cagemate nerve constriction (CNC), in which one animal of each partner was subjected to sciatic nerve constriction; and cagemate sham (CS), subjected to the same surgical procedure but without suffering nerve constriction. In Experiments 1, 2, and 3 on day 28 of living together, the cagemates (CNC and CS) animals received a single systemic injection (intraperitoneally) of vehicle or CBD (0.3, 1, 10, or 30 mg/kg). After 30 min, the cagemates were subjected to the elevated plusmaze followed by exposure to the writhing and sucrose splash tests. For chronic treatment (Exp. 4), sham and chronic constriction injury animals received a repeated systemic injection (subcutaneous) of vehicle or CBD (10 mg/kg) for 14 days after the sciatic nerve constriction procedure. On days 28 and 29 sham and chronic constriction injury animals and their cagemates were behaviorally tested. 

Results and Conclusion: Acute CBD administration attenuated anxiety-like behavior, pain hypersensitivity, and anhedonic-like behavior in cagemates that cohabited with a pair in chronic pain. In addition, repeated CBD treatment reversed the anxiety-like behavior induced by chronic pain and enhanced the mechanical withdrawal thresholds in Von Frey filaments and the grooming time in the sucrose splash test. Moreover, repeated CBD treatment effects were socially transferred to the chronic constriction injury cagemates.”

https://pubmed.ncbi.nlm.nih.gov/37074109/

https://www.liebertpub.com/doi/10.1089/can.2022.0300

Cannabidiol reduces LPS-induced nociception via endocannabinoid system activation

“Bacterial infections are often accompanied by fever and generalized muscle pain. However, the treatment of pain with an infectious etiology has been overlooked. Thus, we investigated the impact of cannabidiol (CBD) in bacterial lipopolysaccharide (LPS)-induced nociception.

Male Swiss mice received intrathecal (i.t.) LPS injection, and the nociceptive threshold was measured by the von Frey filaments test. Spinal involvement of the cannabinoid CB2 receptor, toll-like receptor 4 (TLR4), microglia and astrocytes were evaluated by i.t. administration of their respectively antagonists or inhibitors. Western blot, immunofluorescence, ELISA and liquid chromatography-mass spectrometry were used to assess Cannabinoid CB2 receptors and TLR4 spinal expression, proinflammatory cytokines and endocannabinoid levels. CBD was administered intraperitoneally at 10 mg/kg.

The pharmacological assay demonstrated TLR4 participation in LPS-induced nociception. In addition, spinal TLR4 expression and proinflammatory cytokine levels were increased in this process.

CBD treatment prevented LPS-induced nociception and TLR4 expression.

AM630 reversed antinociception and reduced CBD-induced endocannabinoids upregulation. Increased spinal expression of the cannabinoid CB2 receptor was also found in animals receiving LPS, which was accompanied by reduced TLR4 expression in CBD-treated mice.

Taken together, our findings indicated that CBD is a potential treatment strategy to control LPS-induced pain by attenuating TLR4 activation via the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/37076976/

https://onlinelibrary.wiley.com/doi/10.1111/bcpt.13876

Combined non-psychoactive Cannabis components cannabidiol and β-caryophyllene reduce chronic pain via CB1 interaction in a rat spinal cord injury model

Lopiccolo & Chang in PLoS ONE – BU Linguistics

“The most frequently reported use of medical marijuana is for pain relief. However, its psychoactive component Δ9-tetrahydrocannabinol (THC) causes significant side effects. Cannabidiol (CBD) and β-caryophyllene (BCP), two other cannabis constituents, possess more benign side effect profiles and are also reported to reduce neuropathic and inflammatory pain. We evaluated the analgesic potential of CBD and BCP individually and in combination in a rat spinal cord injury (SCI) clip compression chronic pain model. Individually, both phytocannabinoids produced dose-dependent reduction in tactile and cold hypersensitivity in male and female rats with SCI. When co-administered at fixed ratios based on individual A50s, CBD and BCP produced enhanced dose-dependent reduction in allodynic responses with synergistic effects observed for cold hypersensitivity in both sexes and additive effects for tactile hypersensitivity in males. Antinociceptive effects of both individual and combined treatment were generally less robust in females than males. CBD:BCP co-administration also partially reduced morphine-seeking behavior in a conditioned place preference (CPP) test. Minimal cannabinoidergic side effects were observed with high doses of the combination. The antinociceptive effects of the CBD:BCP co-administration were not altered by either CB2 or μ-opioid receptor antagonist pretreatment but, were nearly completely blocked by CB1 antagonist AM251. Since neither CBD or BCP are thought to mediate antinociception via CB1 activity, these findings suggest a novel CB1 interactive mechanism between these two phytocannabinoids in the SCI pain state. Together, these findings suggest that CBD:BCP co-administration may provide a safe and effective treatment option for the management of chronic SCI pain.”

https://pubmed.ncbi.nlm.nih.gov/36913400/

“In conclusion, the current findings indicate that the combination of readily accessible non-psychoactive cannabis components CBD oil and BCP may be particularly effective in reducing neuropathic pain resulting from spinal cord injury. In addition, cannabinoid-like side effects were minimal using this combination. Further, the observed decrease in opioid-seeking behavior suggest that this treatment may be useful as a supplemental therapeutic to reduce opioid needed for effective pain management. Together, these findings are supportive of the beneficial effects of combining cannabis components in the armamentarium for chronic pain management.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282920

The antinociceptive activity and mechanism of action of cannabigerol

Biomedicine & Pharmacotherapy

“Cannabis has been used for centuries to treat pain.

The antinociceptive activity of tetrahydrocannabinol (THC) or cannabidiol (CBD) has been widely studied. However, the antinociceptive effects of other cannabis components, such as cannabichromene (CBC) and cannabigerol (CBG), have rarely been revealed. The antinociceptive mechanism of CBG is not yet clear, so we investigated the antinociceptive effect of CBG on different pain models, and explored the mechanism of action of CBG to exert antinociceptive effects.

In the current study, we compared the antinociceptive effects of CBC, CBD, and CBG on the carrageenan-induced inflammatory pain model in mice, and the results showed that CBG had a better antinociceptive effects through intraplantar administration. On this basis, we further investigated the antinociceptive effect of CBG on CIA-induced arthritis pain model and nerve pain model in mice, and found that CBG also relieved on both types of pain. Then, we explored the antinociceptive mechanism of CBG, which revealed that CBG can activate TRPV1 and desensitize it to block the transmission of pain signals. In addition, CBG can further activate CB2R, but not CB1R, to stimulate the release of β-endorphin, which greatly promotes the antinociceptive effect.

Finally, the safety test results showed that CBG had no irritating effect on the rabbits’ skin, and it did not induce significant biochemical and hematological changes in mice. Transdermal delivery results also indicated that CBG has certain transdermal properties. Overall, this study indicates that CBG is promising for developing a transdermal dosage for pain management.”

https://pubmed.ncbi.nlm.nih.gov/36916438/

“Cannabigerol can exert antinociceptive effects on multiple pain models.”

https://www.sciencedirect.com/science/article/pii/S0753332222015529?via%3Dihub

Cannabidiol prevents chemotherapy-induced neuropathic pain by modulating spinal TLR4 via endocannabinoid system activation

Journal of Pharmacy and Pharmacology

“Objectives: This study aimed to investigate the effect of cannabidiol (CBD) on type 4 Toll-like receptors (TLR4), glial cells and pro-inflammatory cytokines during the neuropathic pain induced by the chemotherapy agent paclitaxel (PTX), as well as the involvement of the endocannabinoid system in this process.

Methods: Male C57BL6 mice were subjected to PTX-induced neuropathic pain. To evaluate the involvement of the TLR4, glial cells and cannabinoid CB2 receptor, specific inhibitors or antagonists were intrathecally administered. The western blotting and immunofluorescence assay was performed to evaluate the spinal expression of TLR4, microglia, astrocytes and cannabinoid CB2 receptor. The levels of spinal pro-inflammatory cytokines and endocannabinoids were determined by enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry analysis, respectively.

Key findings: CBD prevented PTX-induced neuropathic pain, and the cannabinoid CB2 receptor antagonist AM630 reversed this effect. In addition, CBD treatment inhibited the spinal expression of TLR4 and Iba1 in mice with neuropathic pain. CBD also increased spinal levels of endocannabinoids anandamide and 2-arachidonoylglycerol, and reduced levels of cytokines in mice with neuropathic pain.

Conclusions: CBD was efficient in preventing PTX-induced neuropathic pain, and this effect may involve inhibition of the TLR4 on microglia spinal with activation of the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/36946366/

https://academic.oup.com/jpp/advance-article-abstract/doi/10.1093/jpp/rgad023/7083482?redirectedFrom=fulltext&login=false

Comparing the effects of medical cannabis for chronic pain patients with and without co-morbid anxiety: A cohort study

Publication Cover

“Introduction: There is growing evidence on the efficacy of cannabis-based medicinal products (CBMPs) for chronic pain (CP). Due to the interaction between CP and anxiety, and the potential impact of CBMPs on both anxiety and CP, this article aimed to compare the outcomes of CP patients with and without co-morbid anxiety following CBMP treatment.

Methods: Participants were prospectively enrolled and categorized by baseline General Anxiety Disorder-7(GAD-7) scores, into ‘no anxiety'(GAD-7 < 5) and ‘anxiety'(GAD-7 ≥ 5) cohorts. Primary outcomes were changes in Brief Pain Inventory Short-Form, Short-form McGill Pain Questionnaire-2, Pain Visual Analogue Scale, Sleep Quality Scale (SQS), GAD-7 and EQ-5D-5L index values at 1, 3 and 6 months.

Results: 1254 patients (anxiety = 711; no anxiety = 543) met inclusion criteria. Significant improvements in all primary outcomes were observed at all timepoints (p < 0.050), except GAD-7 in the no anxiety group(p > 0.050). The anxiety cohort reported greater improvements in EQ-5D-5L index values, SQS and GAD-7(p < 0.050), but there were no consistent differences in pain outcomes.

Conclusion: A potential association between CBMPs and improvements in pain and health-related quality of life (HRQoL) in CP patients was identified. Those with co-morbid anxiety reported greater improvements in HRQoL.”

https://pubmed.ncbi.nlm.nih.gov/36803620/

“A potential association between initiation of CBMPs and improvements in pain and HRQoL, as well as reductions in opioid consumption and an acceptable AE profile in both cohorts was found, complimenting previous UKMCR studies. Moreover, CP patients with co-morbid anxiety may achieve better HRQoL outcomes and potentially pain outcomes due to CBMPs’ peripheral and central effects.”

https://www.tandfonline.com/doi/full/10.1080/14737175.2023.2181696

A Retrospective Medical Record Review of Adults with Non-Cancer Diagnoses Prescribed Medicinal Cannabis

Logo of jclinmed

“Research describing patients using medicinal cannabis and its effectiveness is lacking. We aimed to describe adults with non-cancer diagnoses who are prescribed medicinal cannabis via a retrospective medical record review and assess its effectiveness and safety. From 157 Australian records, most were female (63.7%; mean age 63.0 years). Most patients had neurological (58.0%) or musculoskeletal (24.8%) conditions. Medicinal cannabis was perceived beneficial by 53.5% of patients.

Mixed-effects modelling and post hoc multiple comparisons analysis showed significant changes overtime for pain, bowel problems, fatigue, difficulty sleeping, mood, quality of life (all p < 0.0001), breathing problems (p = 0.0035), and appetite (p = 0.0465) Symptom Assessment Scale scores. For the conditions, neuropathic pain/peripheral neuropathy had the highest rate of perceived benefit (66.6%), followed by Parkinson’s disease (60.9%), multiple sclerosis (60.0%), migraine (43.8%), chronic pain syndrome (42.1%), and spondylosis (40.0%). For the indications, medicinal cannabis had the greatest perceived effect on sleep (80.0%), followed by pain (51.5%), and muscle spasm (50%). Oral oil preparations of balanced delta-9-tetrahydrocannabinol/cannabidiol (average post-titration dose of 16.9 mg and 34.8 mg per day, respectively) were mainly prescribed. Somnolence was the most frequently reported side effect (21%).

This study supports medicinal cannabis’ potential to safely treat non-cancer chronic conditions and indications.”

“Cannabis (Cannabaceae) has been used medicinally since 400 AD for its analgesic, appetite enhancement, and myorelaxant properties. Emerging evidence suggests that people with chronic conditions may benefit from using medicinal cannabis for treating chronic pain, multiple sclerosis-related spasticity, epilepsy, Parkinson’s disease, insomnia, and anxiety.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965412/

Medical Cannabis for Chronic Nonmalignant Pain Management

SpringerLink

“Purpose of review: Cannabis has been used since ancient times for medical and recreational research. This review article will document the validity of how medical cannabis can be utilized for chronic nonmalignant pain management.

Recent findings: Current cannabis research has shown that medical cannabis is indicated for symptom management for many conditions not limited to cancer, chronic pain, headaches, migraines, and psychological disorders (anxiety and post-traumatic stress disorder). Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are active ingredients in cannabis that modulate a patient’s symptoms. These compounds work to decrease nociception and symptom frequency via the endocannabinoid system. Research regarding pain management is limited within the USA as the Drug Enforcement Agency (DEA) classifies it as a schedule one drug. Few studies have found a limited relationship between chronic pain and medical cannabis use. A total of 77 articles were selected after a thorough screening process using PubMed and Google Scholar. This paper demonstrates that medical cannabis use provides adequate pain management. Patients suffering from chronic nonmalignant pain may benefit from medical cannabis due to its convenience and efficacy.”

https://pubmed.ncbi.nlm.nih.gov/36897501/

“Patients often seek medical consultations most commonly because of having intolerable chronic pain. Medications such as NSAIDs or opioids are being used to relieve such pain. However, long-term use of these medications can also cause adverse effects on health. Several studies have been done regarding cannabis as an alternative for chronic pain. Some patients were reported to get relief from cannabis consumption through various routes, and the use of it has been legalized, too, in some states in the USA and countries like Germany. Italy, the Netherlands, UK, Australia, Uruguay, Brazil, Colombia, Chile, Thailand, and Jamaica. Compared with opioids, studies show that cannabis use has lesser adverse effects, and it could even lessen opioid dependence.”

https://link.springer.com/article/10.1007/s11916-023-01101-w