Medical Cannabis Patients Report Improvements in Health Functioning and Reductions in Opiate Use

Publication Cover

“Purpose: Opioid use rates have dropped as North American patients gain access to medical cannabis, indicating a harm reduction role, yet health outcomes remain mostly unexplored. This study presents self-reported medical cannabis use, perceptions of health functioning, and changes in opioid pain medication use in Florida medical cannabis patients.

Methods: Patients (n = 2,183) recruited from medical dispensaries across Florida completed a 66-item cross-sectional survey that included demographic, health, and medication usage items, along with items from the Medical Outcomes Survey (SF-36) to assess health functioning before and after cannabis initiation.

Results: Most participants were between the ages of 20 and 70 years of age (95%), over 54% were female, 47% were employed, and most (85%) were white. Commonly reported ailment groups were Pain and Mental Health combined (47.92%), Mental Health (28.86%) or Pain (9.07%). Health domains of bodily pain, physical functioning, and social functioning improved while limitations due to physical and emotional problems were unchanged. Most patients rated medical cannabis as being important to their quality of life. Many (60.98%) reported using pain medications prior to medical cannabis, 93.36% of these reported a change in pain medication after medical cannabis. The majority of participants (79%) reported either cessation or reduction in pain medication use following initiation of medical cannabis and 11.47% described improved functioning.

Conclusions: The findings suggest that some medical cannabis patients decreased opioid use without harming quality of life or health functioning, soon after the legalization of medical cannabis. The public health implications of medical cannabis as an alternative pain medication are discussed.”

https://pubmed.ncbi.nlm.nih.gov/36168127/

“In conclusion, some patients may reduce or even cease use of OBPM upon access to medical cannabis, potentially without harming quality of life or health functioning. This is suggestive of the harm reduction role and opioid-sparing effects of medical cannabis in a quality-controlled and regulated medical-use only state. Given the great individual and societal costs associated with the opioid crisis (Florence et al., 2021; National Institute on Drug Abuse, n.d.), the public health implications of these findings are important to consider.”

https://www.tandfonline.com/doi/full/10.1080/10826084.2022.2107673

Self-Reported Cannabis Use Is Associated With a Lower Rate of Persistent Opioid Use After Total Joint Arthroplasty

Arthroplasty Today (@ArthroToday) / Twitter

“Background: Legalization of cannabis, along with concern over prescription opiate use, has garnered interest in cannabis for adjuvant pain control. This study examines the relationship between cannabis and opioid consumption after total hip (THA) or knee (TKA) arthroplasty.

Methods: Patients undergoing primary THA or TKA with minimum 6-month follow-up who self-reported cannabis use were retrospectively reviewed. A total of 210 patients (128 TKAs and 82 THAs) were matched by age; gender; type of arthroplasty; Charlson Comorbidity Index; and use of nicotine, antidepressants, or benzodiazepines to patients who did not self-report cannabis use. Patients receiving an opioid prescription after 90 days postoperatively were classified as persistent opioid users (POUs). Duration of opioid use (DOU) was calculated for non-POU patients as the time between surgery and their last opioid prescription. Differences in inpatient morphine milligram equivalents (MMEs), outpatient MMEs, POU, and DOU were analyzed.

Results: Cannabis users required equivalent inpatient and outpatient MMEs. There was no difference in DOU. There was a significant difference in POU between cannabis users and matched controls (1.4% [n = 3] vs 9.5% [n = 20], P < .001, respectively). Grouping patients by TKA or THA, there remained a difference in POU for TKA (1.5% [n = 2] vs 10.9% [n = 14], P = .002) and THA (1.2% [n = 1] vs 7.3% [n = 6], P = .04). There was no difference in inpatient or outpatient MMEs or DOU for THA and TKA patients.

Conclusions: There is a reduced rate of POU in patients who self-report perioperative cannabis use. Prospective studies are needed to clarify the role of cannabis as an adjunct to perioperative pain control.”

https://pubmed.ncbi.nlm.nih.gov/36158462/

“This study helps to shed light on what role if any cannabis should play as a part of an opioid-sparing multimodal pain protocol after TJA. Self-reported perioperative cannabis use appeared to significantly reduce the number of patients that persistently used opioids greater than 90 days after TJA from 9.5% to 1.4%.”

https://www.arthroplastytoday.org/article/S2352-3441(22)00164-9/fulltext

Preoperative cannabis use does not increase opioid utilization following primary total hip arthroplasty in a propensity matched analysis

SpringerLink

“Purpose: The recreational and medical use of cannabis is being legalized worldwide. Its use has been linked to an increased risk of developing opioid use disorders. As opioids continue to be prescribed after total hip arthroplasty (THA), the influence that preoperative cannabis use may have on postoperative opioid consumption remains unknown. The purpose of this study was to assess the relationship between preoperative cannabis use and opioid utilization following primary THA.

Methods: We identified all patients over the age of 18 who underwent unilateral, primary THA for a diagnosis of osteoarthritis at a single institution from February 2019 to April 2021. Our cohort was grouped into current cannabis users (within 6 months of surgery) and those who reported never using cannabis. One hundred and fifty-six current users were propensity score matched 1:6 with 936 never users based on age, sex, BMI, history of chronic pain, smoking status, history of anxiety/depression, ASA classification and type of anesthesia. Outcomes included inpatient and postdischarge opioid use in morphine milligram equivalents.

Results: Total inpatient opioid utilization, opioids refilled, and total opioids used within 90 postoperative days were similar between the groups.

Conclusion: In propensity score matched analyses, preoperative cannabis use was not independently associated with an increase in inpatient or outpatient, 90-days opioid consumption following elective THA.”

https://pubmed.ncbi.nlm.nih.gov/36129515/

https://link.springer.com/article/10.1007/s00402-022-04619-7

Cannabidiol and Delta-9-Tetrahydrocannabinol Interactions in Male and Female Rats with Persistent Inflammatory Pain

The Journal of Pain

“Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), two of the primary constituents of cannabis, are used by some individuals to self-treat chronic pain. It is unclear whether the pain-relieving effects of CBD alone and in combination with THC are consistent across genders and among types of pain.

The present study compared the effects of CBD and THC given alone and in combination in male and female rats with Complete Freund’s adjuvant-induced inflammatory pain.

After induction of hindpaw inflammation, vehicle, CBD (0.05-2.5 mg/kg), THC (0.05-2.0 mg/kg), or a CBD:THC combination (3:1, 1:1, or 1:3 dose ratio) was administered i.p. twice daily for three days. Then on day four, mechanical allodynia, thermal hyperalgesia, weight-bearing, and locomotor activity were assessed 0.5-4 h after administration of the same dose combination. Hindpaw edema and open field (anxiety-like) behaviors were measured thereafter.

THC alone was anti-allodynic and anti-hyperalgesic, and decreased paw thickness, locomotion, and open field behaviors. CBD alone was anti-allodynic and anti-hyperalgesic. When combined with THC, CBD tended to decrease THC effects on pain-related behaviors and exacerbate THC-induced anxiety-like behaviors, particularly in females.

These results suggest that at the doses tested, CBD-THC combinations may be less beneficial than THC alone for the treatment of chronic inflammatory pain.

PERSPECTIVE: The present study compared CBD and THC effects alone and in combination in male and female rats with persistent inflammatory pain. This study could help clinicians who prescribe cannabis-based medicines for inflammatory pain conditions determine which cannabis constituents may be most beneficial.”

https://pubmed.ncbi.nlm.nih.gov/36122809/

“THC and CBD each reduced chronic inflammatory pain (allodynia and hyperalgesia) in rats.”

https://www.jpain.org/article/S1526-5900(22)00392-3/fulltext

[Cannabinoids for the treatment of chronic pain – an overview of current medical knowledge]

pubmed logo

“Cannabis has been used in medicine for thousands of years, yet its use for therapeutic purposes is still controversial. Meta-analysis of the literature has shown the effectiveness of cannabinoids only in some diseases. Researchers are particularly interested in their use in chronic pain management, which analgesic effect has been proved in many studies. A review of the literature indicates that cannabinoid preparations may be effective in the treatment of some chronic pain disorders, particularly in neuropathic pain, and should be considered as a possible therapeutic choice in the absence of a satisfactory analgesic effect with standard medications. The increasing number of countries approving cannabinoids for medical use creates an opportunity to conduct more clinical trials and collect better-quality data necessary to establish clear guidelines and consistent recommendations for specific pain disorders.”

https://pubmed.ncbi.nlm.nih.gov/36086988/

Practical Considerations for the Use of Cannabis in Cancer Pain Management-What a Medical Oncologist Should Know

jcm-logo

“Pain is a highly debilitating emotional and sensory experience that significantly affects quality of life (QoL). Numerous chronic conditions, including cancer, are associated with chronic pain. In the setting of malignancy, pain can be a consequence of the tumor itself or of life-saving interventions, including surgery, chemotherapy, and radiotherapy. Despite significant pharmacological advances and awareness campaigns, pain remains undertreated in one-third of patients. To date, opioids have been the mainstay of cancer pain management. The problematic side effects and unsatisfactory pain relief of opioids have revived patients’ and physicians’ interest in finding new solutions, including cannabis and cannabinoids. The medical use of cannabis has been prohibited for decades, and it remains in Schedule 1 of the Misuse of Drugs Regulations. Currently, the legal context for its usage has become more permissive. Various preclinical and observational studies have aimed to prove that cannabinoids could be effective in cancer pain management. However, their clinical utility must be further supported by high-quality clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/36078963/

https://www.mdpi.com/2077-0383/11/17/5036/htm

Long-term effects of a diet supplement containing Cannabis sativa oil and Boswellia serrata in dogs with osteoarthritis following physiotherapy treatments: a randomised, placebo-controlled and double-blind clinical trial

Publication Cover

“Dogs are commonly affected by Osteoarthritis (OA). Different approaches can be used to alleviate animals’ symptoms. In this randomised, placebo-controlled and double-blind clinical trial, we performed a three months follow-up study assessing the efficacy of a food supplement containing natural ingredients (Cannabis sativa oil, Boswellia serrata Roxb. Phytosome® and Zingiber officinale extract) in dogs with OA after the interruption of physiotherapy that was performed during the previous three months. Inflammation and oxidative stress were reduced in the treated group (higher glutathione (GSH) and lower C-reactive protein [CRP] levels in blood) as well as chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/36067506/

https://www.tandfonline.com/doi/abs/10.1080/14786419.2022.2119967?journalCode=gnpl20

Cannabidivarin alleviates neuroinflammation by targeting TLR4 co-receptor MD2 and improves morphine-mediated analgesia

Frontiers - Crunchbase Company Profile & Funding

“Toll-like receptor 4 (TLR4) is a pattern-recognition receptor (PRR) that regulates the activation of immune cells, which is a target for treating inflammation.

In this study, Cannabidivarin (CBDV), an active component of Cannabis, was identified as an antagonist of TLR4. In vitro, intrinsic protein fluorescence titrations revealed that CBDV directly bound to TLR4 co-receptor myeloid differentiation protein 2 (MD2). Cellular thermal shift assay (CETSA) showed that CBDV binding decreased MD2 stability, which is consistent with in silico simulations that CBDV binding increased the flexibility of the internal loop of MD2.

Moreover, CBDV was found to restrain LPS-induced activation of TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced pro-inflammatory factors NO, IL-1β, IL-6 and TNF-α. Hot plate test showed that CBDV potentiated morphine-induced antinociception. Furthermore, CBDV attenuated morphine analgesic tolerance as measured by the formalin test by specifically inhibiting chronic morphine-induced glial activation and pro-inflammatory factors expression in the nucleus accumbent.

This study confirms that MD2 is a direct binding target of CBDV for the anti-neuroinflammatory effect and implies that CBDV has great translational potential in pain management.”

https://pubmed.ncbi.nlm.nih.gov/36032146/

“The results imply that CBDV could be a potential therapeutic agent for improving morphine-mediated analgesia.”

https://www.frontiersin.org/articles/10.3389/fimmu.2022.929222/full

Cannabidiol attenuates hypersensitivity and oxidative stress after traumatic spinal cord injury in rats

Neuroscience Letters

“Neuropathic pain (NP) arises as a direct consequence of traumatic spinal cord injury (SCI), which leads to devastating consequences for people suffering from this condition since no specific treatment has been defined. One relevant mechanism in generating painful stimuli involves the direct participation of reactive oxygen species (ROS) at the cellular and subcellular levels.

Cannabidiol (CBD) is one of the two most crucial cannabinoid components of the cannabis plant and has been proposed as a potential treatment for NP. Its antioxidant, neuroprotective and anti-inflammatory properties have been documented. However, there is insufficient evidence regarding CBD as treatment of NP induced by SCI or the mechanisms that underlie this effect.

In this study, we evaluated the antinociceptive effect of CBD as an acute treatment after the nociceptive behaviors characteristic of NP were established (hypersensitivity threshold and hypersensitivity response). Furthermore, the participation of oxidative stress was determined by lipid peroxidation (LP) and glutathione concentration (GSH) in female Wistar rats with SCI.

Acute treatment with CBD (2.5-20 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH concentration in injured tissue 15 days after injury. The findings of this study suggest that the antinociceptive effect induced by CBD is regulated by reducing oxidative stress by decreasing the LP and increasing the concentration of antioxidant (GSH) defenses.”

https://pubmed.ncbi.nlm.nih.gov/36028005/

“Cannabidiol decreases hyperalgesia in a dose–response manner after spinal cord injury.”

https://www.sciencedirect.com/science/article/abs/pii/S0304394022004165?via%3Dihub

Cannabidiol enhances the antinociceptive effects of morphine and attenuates opioid-induced tolerance in the chronic constriction injury model

Behavioural Brain Research

“Neuropathic pain (NP) is a complex health problem that includes sensorial manifestations such as evoked and ongoing pain. Cannabidiol (CBD) has shown potential in the treatment of NP and the combination between opioids and cannabinoids has provided promising results on pain relief. Thus, our study aimed to investigate the effect of treatment combination between CBD and morphine on evoked and ongoing pain, and the effect of CBD on morphine-induced tolerance in the model of chronic constriction injury (CCI) of the sciatic nerve in rats.

Mechanical thresholds (i.e., evoked pain) were evaluated before and 7 days after surgery. We also employed a 4-day conditioned place preference (CPP) protocol, to evaluate relief of ongoing pain (6 to 9 days after surgery). Treatment with morphine (2 and 4mg/kg) or CBD (30mg/kg) induced a significant antinociceptive effect on evoked pain.

The combination of CBD (30mg/kg) and morphine (1mg/kg) produced an enhanced antinociceptive effect, when compared to morphine alone (1mg/Kg). Treatment with morphine (1 and 2mg/kg) or CBD (30mg/kg) alone failed to induce significant scores in the CPP test. However, combined treatment of CBD (30mg/kg) and morphine (1mg/kg) provided significant positive scores, increased the number of entrances in the drug-paired chamber in the CPP test and did not alter locomotor activity in rats. Lastly, treatment with CBD partially attenuated morphine-induced tolerance.

In summary, our results support the indication of CBD as an adjuvant to opioid therapy for the attenuation of NP and opioid-induced analgesic tolerance.”

https://pubmed.ncbi.nlm.nih.gov/36028000/

“Taken together, the present results demonstrate that CBD or morphine exert antinociceptive effects in both mechanically evoked pain and ongoing pain after CCI in rats. The treatment combination of CBD and a sub-therapeutic dose of morphine, provided marked antinociceptive effects in both evoked and ongoing pain.”

https://www.sciencedirect.com/science/article/abs/pii/S0166432822003448?via%3Dihub