“Chronic pain presents significant personal, psychological, and socioeconomic hurdles, impacting over 30% of adults worldwide and substantially contributing to disability. Unfortunately, current pharmacotherapy often proves inadequate, leaving fewer than 70% of patients with relief. This shortfall has sparked a drive to seek alternative treatments offering superior safety and efficacy profiles.
Cannabinoid-based pharmaceuticals, notably cannabidiol (CBD), hold promise in pain management, driven by their natural origins, versatility, and reduced risk of addiction. As we navigate the opioid crisis, ongoing research plunges into CBD’s therapeutic potential, buoyed by animal studies revealing its pain-relieving prowess through various system tweaks. However, the efficacy of cannabis in chronic pain management remains a contentious and stigmatized issue.
The International Association for the Study of Pain (IASP) presently refrains from endorsing cannabinoid use for pain relief. Nevertheless, evidence indicates their potential in alleviating cancer-related, neuropathic, arthritis, and musculoskeletal pain, necessitating further investigation. Crucially, our comprehension of CBD’s role in pain management is a journey still unfolding, with animal studies illustrating its analgesic effects through interactions with the endocannabinoid, inflammatory, and nociceptive systems.
As the plot thickens, it’s clear: the saga of chronic pain and CBD’s potential offers a compelling narrative ripe for further exploration and understanding.”
“Background: The current analgesics often prevent patients from getting effective treatment due to their adverse effects. Cannabidiol (CBD) is well tolerated, has few side effects and has been extensively investigated in analgesia. However, its oral bioavailability is extremely low. In order to solve this problem, we developed the cannabidiol nanocrystals (CBD-NC) in the earlier stage.
Methods: In this study, we evaluated the nociceptive behaviours associated with neuropathic pain (NP) induced by the spared nerve injury (SNI) model. Assessment of pain threshold was evaluated by paw withdraw threshold (PWT) and paw withdrawal latency (PWL). The improving effect on the motor dysfunction was determined by rota-rod testing. To assess the neuroprotective effect, nerve demyelination and expression of peripheral myelin protein PMP22 were measured with myelin sheath staining and western blotting. Protein expressions in microglia of spinal cord were tested by western blot to explore the underlying mechanism.
Results: Compared with the CBD oil solution, CBD-NC significantly reduced mechanical allodynia and thermal hyperalgesia in rats. CBD-NC could improve motor dysfunction induced by SNI in rats, significantly reverse the demyelination and increase the expression of the marker protein of peripheral myelin. Underlying spinal analgesic mechanism of microglia and related factors were preliminarily confirmed.
Conclusions: CBD-NC administration is an effective treatment for NP associated with SNI, and the analgesic effect of CBD-NC was significantly better than that of CBD oil sol. By contrast, CBD-NC has a fast-acting and long-term effect in the treatment of NP. Our study further supports the potential therapeutic effect of CBD-NC on NP.
Significance: The absolute bioavailability of the CBD-NC intramuscular injection formulation can reach 203.31%, which can solve the problem of low oral bioavailability. This research evaluated the therapeutic effect of CBD-NC on NP associated with the SNI model for the first time. All available date showed that whatever the analgesic or neuroprotective effect of CBD-NC, it was significantly better than that of CBD oil sol., which was consistent with the results of the pharmacokinetic. This research supports the initiation of more trials testing the efficacy of CBD-NC for treating NP.”
“Background: The belief that cannabis has analgesic and anti-inflammatory properties continues to attract patients with chronic musculoskeletal (MSK) pain towards its use. However, the role that cannabis will play in the management of chronic MSK pain remains to be determined. This study examined 1) the rate, patterns of use, and self-reported efficacy of cannabis use among patients with chronic MSK pain and 2) the interest and potential barriers to cannabis use among patients with chronic MSK pain not currently using cannabis.
Methods: Self-reported cannabis use and perceived efficacy were prospectively collected from chronic MSK pain patients presenting to the Orthopaedic Clinic at the University Health Network, Toronto, Canada. The primary dependent variable was current or past use of cannabis to manage chronic MSK pain; bivariate and multivariable logistic regression were used to identify patient characteristics independently associated with this outcome. Secondary outcomes were summarized descriptively, including self-perceived efficacy among cannabis users, and interest as well as barriers to cannabis use among cannabis non-users.
Results: The sample included 629 patients presenting with chronic MSK pain (mean age: 56±15.7 years; 56% female). Overall, 144 (23%) reported past or present cannabis use to manage their MSK pain, with 63.7% perceiving cannabis as very or somewhat effective and 26.6% considering it as slightly effective. The strongest predictor of cannabis use in this study population was a history of recreational cannabis use (OR 12.7, p<0.001). Among cannabis non-users (N=489), 65% expressed interest in using cannabis to manage their chronic MSK pain, but common barriers to use included lack of knowledge regarding access, use and evidence, and stigma.
Conclusions: One in five patients presenting to an orthopaedic surgeon with chronic MSK pain are using or have used cannabis with the specific intent to manage their pain, and most report it to be effective. Among non-users, two-thirds reported an interest in using cannabis to manage their MSK pain, but common barriers to use existed. Future double-blind placebo-controlled trials are required to understand if this reported efficacy is accurate, and what role, if any, cannabis may play in the management of chronic MSK pain.”
“One in five patients presenting to an orthopaedic surgeon with chronic MSK pain are using or have used cannabis with the specific intent to manage their pain, and most report it to be effective. Among non-users, two-thirds reported an interest in using cannabis to manage their MSK pain, but common barriers to use existed. Future double-blind placebo-controlled trials are required to understand if this reported efficacy is accurate, and what role, if any, cannabis may play in the management of chronic MSK pain.”
“People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affect their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects.
Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of Δ9-tetrahydrocannabinol (THC), cannabis’ intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control.
Acute THC administration (0.1-3 mg-kg-1, intraperitoneal, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in HbSS, but not HbAA mice. In the tail-flick assay, THC (1 and 3 mg-kg-1, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg-kg-1, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-h novel object recognition). Subchronic THC treatment (1 and 3 mg-kg-1, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice.
Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents.
Significance Statement The study explores THC’s efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC’s potential as an alternative pain management option in SCD, highlighting both its benefits and limitations.”
“Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia.
Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture.
Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values.
Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.”
“Our study paves the way for the benefits of either synthetic cannabinoids or phytocannabinoids for the palliation of chemotherapy-induced peripheral neuropathy.”
“Background: Cannabidiol (CBD) is a non-psychoactive phyto-cannabinoid derived from the Cannabis sativa plant. CBD exhibits various interactions at receptor sites, prompting the research of its potential anti-inflammatory, immunomodulatory, psychological, and pain-relieving effects. This study aimed to investigate the physiological, biochemical, and psychometric effects of a brand-specific, hemp-derived CBD product in healthy adults over a 12-week observation period.
Methods: 54 healthy males and females (age = 25 ± 7y; BMI = 24.82 ± 3.25 kg/m2) recruited from a large Southeastern University completed the study. Participants arrived at the laboratory after > 8 h of fasting, and > 48 h without alcohol consumption and vigorous exercise. Following baseline measurements (height, weight, blood pressure, electrocardiogram (ECG), and blood work), participants were stratified by sex and randomized to either CBD or placebo groups. Products were administered double-blinded, with both given in liquid form containing medium-chain triglyceride oil, while the CBD product specifically contained 50 mg/mL of CBD. Participants were instructed to consume 1 mL of their product twice daily and were given enough product to last until their next laboratory visit. Data were collected at baseline and on days 30 ± 3, 60 ± 3, and 90 ± 3. Blood was drawn for analysis of immune and inflammatory biomarkers. Chronic pain among participants was calculated using urine samples according to the foundational pain index (FPI). Self-reported psychometric questionnaires were utilized (Cohen’s Perceived Stress Scale, Pittsburgh Sleep Quality Index, Profile of Mood States,10-item Likert scale for perceived pain) to assess stress, sleep quality, mood state, and body discomfort. To determine overall wellbeing, participants completed a daily survey indicating if they missed work or school due to illness. Change from baseline was calculated for each measure, and mixed effects models were used to determine differences between groups over time while adjusting for baseline values (α = 0.05). Data are presented as mean ± standard deviation.
Results: There were no Group-by-Time interactions or Group or Time main effects for immune or inflammatory biomarkers (p > 0.05). Analyses revealed no Group-by-Time interactions or main effects observed for perceived stress, sleep quality, overall mood disturbance, and all the profile of mood state subscales (p > 0.05), except “vigor-activity.” A Time main effect was found for the sub-score for “vigor-activity” (p = 0.007; Pre CBD = 19.5 ± 5.2, Post CBD = 17.3 ± 5.3; Pre PL = 19.0 ± 5.7, Post PL = 17.9 ± 7.1), which decreased from Visit 3 to Visit 4 (p = 0.025) and from Visit 3 to Visit 5 (p = 0.014). There was a Group main effect for FPI (p = 0.028; Pre CBD = 11.9 ± 14.4, Post CBD = 8.8 ± 10.9; Pre PL = 9.0 ± 14.2, Post PL = 12.9 ± 11.5), indicating that the placebo group had greater increases in pain over the intervention compared to the CBD group. No significant differences were found between groups in the incidence and prevalence of “colds or flus” (p > 0.05).
Discussion: CBD was safe and well tolerated in healthy adults. These findings show pain was lower in the CBD group, suggesting a potentially positive effect for consumption of CBD. “Vigor-activity” decreased across the intervention, which may be a confounding effect of the academic semester. While the dosage chosen was safe, more research may be warranted using higher doses as these may be needed to observe further therapeutic effects in healthy populations.”
“Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties.
Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery.
This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies.
Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.”
“Chronic pain conditions affect nearly 20% of the population in the United States. Current medical interventions, such as opioid drugs, are effective at relieving pain but are accompanied by many undesirable side effects. This is one reason increased numbers of chronic pain patients have been turning to Cannabis for pain management.
Cannabis contains many bioactive chemical compounds; however, current research looking into lesser-studied minor cannabinoids in Cannabis lacks uniformity between experimental groups and/or excludes female mice from investigation. This makes it challenging to draw conclusions between experiments done with different minor cannabinoid compounds between labs or parse out potential sex differences that could be present.
We chose five minor cannabinoids found in lower quantities within Cannabis: cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), Δ8-tetrahydrocannabinol (Δ8-THC), and Δ9-tetrahydrocannabivarin (THCV). These compounds were then tested for their cannabimimetic and pain-relieving behaviors in a cannabinoid tetrad assay and a chemotherapy-induced peripheral neuropathy (CIPN) pain model in male and female CD-1 mice.
We found that the minor cannabinoids we tested differed in the cannabimimetic behaviors evoked, as well as the extent. We found that CBN, CBG, and high dose Δ8-THC evoked some tetrad behaviors in both sexes, while THCV and low dose Δ8-THC exhibited cannabimimetic tetrad behaviors only in females. Only CBN efficaciously relieved CIPN pain, which contrasts with reports from other researchers. Together these findings provide further clarity to the pharmacology of minor cannabinoids and suggest further investigation into their mechanism and therapeutic potential.
Significance Statement Minor cannabinoids are poorly studied ligands present in lower levels in Cannabis than cannabinoids like THC. In this study we evaluated 5 minor cannabinoids (CBN, CBDV, CBG, THCV, and Δ8-THC) for their cannabimimetic and analgesic effects in mice. We found that 4 of the 5 minor cannabinoids showed cannabimimetic activity, while one was efficacious in relieving chronic neuropathic pain. This work is important in further evaluating the activity of these drugs, which are seeing wider public use with marijuana legalization.”
“Patients with arthritis report using cannabis for pain management, and the major cannabinoid Δ9-THC has anti-inflammatory properties, yet the effects of minor cannabinoids on arthritis are largely unknown.
The goal of the present study was to determine the antiarthritic potential of the minor cannabinoid Δ8-THC using the collagen-induced arthritis (CIA) mouse model.
Adult male DBA/1J mice were immunized and boosted 21 days later with an emulsion of collagen and complete Freund’s adjuvant. Beginning on the day of the booster, mice were administered twice-daily injections of Δ8-THC (3 or 30 mg/kg), the steroid dexamethasone (2 mg/kg), or vehicle for two weeks. Dorsal-ventral paw thickness and qualitative measures of arthritis were recorded daily, and latency to fall from an inverted grid was measured on alternating days, to determine arthritis severity and functional impairment. On the final day of testing, spontaneous wire-climbing behavior and temperature preference in a thermal gradient ring were measured to assess CIA-depressed and -conditioned behavior, respectively.
The Δ8-THC treatment (30 mg/kg) reduced paw swelling and qualitative signs of arthritis. Δ8-THC also blocked CIA-depressed climbing and CIA-induced preference for a heated floor without producing locomotor effects but did not affect latency to fall from a wire grid. In alignment with the morphological and behavioral assessments in vivo, histology revealed that Δ8-THC reduced synovial inflammation, proteoglycan loss and cartilage and bone erosion in the foot joints in a dose-dependent manner.
Together, these findings suggest that Δ8-THC not only blocked morphological changes but also prevented functional loss caused by collagen-induced arthritis.
Significance Statement Despite increasing use of cannabis products, the potential effects of minor cannabinoids are largely unknown. Here, the minor cannabinoid Δ8-THC blocked the development of experimentally induced arthritis by preventing both pathophysiological as well as functional effects of the disease model.
These data support the development of novel cannabinoid treatments for inflammatory arthritis.”
“Background and purpose: Chronic neuropathic pain (NP) is commonly associated with cognitive and emotional impairments. Cannabidiol (CBD) presents a broad spectrum of action with a potential analgesic effect. This work investigates the CBD effect on comorbidity between chronic NP, depression, and memory impairment.
Experimental approach: The connection between the neocortex and the hippocampus was investigated with biotinylated dextran amine (BDA) deposits in the prelimbic cortex (PrL). Wistar rats were submitted to chronic constriction injury (CCI) of the sciatic nerve and CA1 treatment with CBD (15, 30, 60 nmol).
Key results: BDA-labeled were found in CA1 and dentate gyrus. CCI-induced mechanical and cold allodynia increased c-Fos protein expression in the PrL and CA1. The number of astrocytes in PrL and CA1 increased, and the number of neuroblasts decreased in CA1. The CCI animals showed increasing depressive-like behaviors, such as memory impairment. CBD (60 nmol) treatment decreased mechanical and cold allodynia, attenuated depressive-associated behaviors, and improved memory performance. Cobalt chloride (CoCl2: 1 nM), WAY-100635 (0.37 nmol), and AM251 (100 nmol) intra-PrL reversed the CBD (60 nmol) effect intra-CA1, both in nociceptive, cognitive, and depressive behaviors.
Conclusion: CBD represents a promising therapeutic perspective in the pharmacological treatment of chronic NP and associated comorbidities such as depression and memory impairments. The CBD effects possibly recruit the CA1-PrL pathway, inducing neuroplasticity. CBD acute treatment into the CA1 produces functional and molecular morphological improvements.”