“This study involved the synthesis of a series of novel cannabidiol (CBD) aromatic ester derivatives, including CBD-8,12-diaromaticester derivatives (compounds 2a-2t) and CBD-8,12-diacetyl-21-aromaticester derivatives (compound 5a-5c).
The antiproliferative activities of these compounds against human liver cancer cell lines HePG2 and HeP3B as well as human pancreatic cancer cell lines ASPC-1 and BXPC-3 were evaluated in vitro using the CCK-8 assay.
The results indicated that compound 2f exhibited an IC50 value of 2.75 µM against HePG2, which is 5.32-fold higher than that of CBD. Additionally, compounds 2b and 5b demonstrated varying degrees of improved anticancer activity (IC50 5.95-9.21 µM) against HePG2.”
“A new, canniprene B (4), along with five known (1–3 and 5–6) dihydrostilbenes were isolated from the leaves of Cannabis sativa collected at CSIR – IIIM, Jammu, India. Structures of all isolated compounds were elucidated by spectroscopic data analysis, including 1D and 2D NMR, and HR-ESI-MS. Canniprene B is a new prenylated dihydrostilbenes, a positional isomer of the known compound canniprene (5). The cytotoxic activities of these compounds (1–6) were evaluated using the SRB assay against a panel of five human cancer cell lines. Notably, canniprene B (4) exhibited varying levels of cytotoxicity with IC50 values ranging from 2.5 to 33.52 μM, demonstrating the most potent activity against pancreatic cancer cells.”
“Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive malignancies with a median 5 year-survival rate of 12%.
Cannabidiol (CBD) has been found to exhibit antineoplastic potential and may potentiate the anticancer effects of cytotoxic’s such as gemcitabine.
CBD therapy has been linked to de novo synthesis of ceramide. The sphingolipid ceramide is a potent tumour suppressor lipid with roles in apoptosis and autophagy. One of the key players involved is ceramide synthase, an enzyme with six isoforms (CerS1-CerS6), reported to have disease prognostic value. Quantitative real time PCR was used to determine mRNA expression levels of ceramide synthase isoforms, GRP78, ATF4 and CHOP. Western blotting was used to analyze protein expression of these markers and knockdown of CerS1 and GRP78 were applied via an siRNA and confirmed by the two mentioned methods. Mice with PDAC xenografts were injected via intraperitoneal method with drugs and tumours were analysed with flow cytometry and processed using H&E and IHC staining. siRNA knockdown of ceramide synthase 1 (CerS1) and analysis point to evidence of a putative CerS1 dependent pathway driven by CBD in activating endoplasmic reticulum (ER) stress target; GRP78.
Upon CBD treatment, CerS1 was upregulated and downstream this led to the GRP78/ATF4/CHOP arm of the unfolded protein response (UPR) pathway being activated. In an in vivo model of PDAC in which CerS1 was not upregulated on IHC, there was no observed improvement in survival of animals, however a reduction in tumour growth was observed in combination chemotherapy and CBD group, indicating further investigations in vivo.
These findings provide evidence of a potential ceramide induced cytotoxic mechanism of action of CBD in pancreatic ductal adenocarcinoma.”
“The findings presented in this work, indicate dose-dependent and time-dependent cytotoxic effects of CBD in both human and murine pancreatic cancer cells.”
“Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas.
Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model.
The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level.
These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.”
“Herbal medicinal plants and their derivatives have been discovered and used as potential sources for the treatment of human cancers for decades. Of these, cannabinoids extracted from the hemp plant Cannabis sativa have been remarkably noted as a potential therapy for the treatment of several human tumors.”
“In summary, this study revealed that cannabinoids (THC:CBD) (1:6) could inhibit the proliferation and induce apoptosis in human PDAC xenograft nude mice models.”
“Pancreatic ductal adenocarcinoma (PDAC) is the most frequent infiltrating type of pancreatic cancer. The poor prognosis associated with this cancer is due to the absence of specific biomarkers, aggressiveness, and treatment resistance. PDAC is a deadly malignancy bearing distinct genetic alterations, the most common being those that result in cancer-causing versions of the KRAS gene.
Cannabigerol (CBG) is a non-psychomimetic cannabinoid with anti-inflammatory properties.
Regarding the anticancer effect of CBG, up to now, there is only limited evidence in human cancers. To fill this gap, we investigated the effects of CBG on the PDAC cell lines, PANC-1 and MIAPaCa-2. The effect of CBG activity on cell viability, cell death, and EGFR-RAS-associated signaling was investigated. Moreover, the potential synergistic effect of CBG in combination with gemcitabine (GEM) and paclitaxel (PTX) was investigated. MTT was applied to investigate the effect of CBG on PDAC cell line viabilities. Annexin-V and Acridine orange staining, followed by cytofluorimetric analysis and Western blotting, were used to evaluate CBG’s effect on cell death. The modulation of EGFR-RAS-associated pathways was determined by Western blot analysis and a Milliplex multiplex assay. Moreover, by employing the MTT data and SynergyFinder Plus software analysis, the effect of the combination of CBG and chemotherapeutic drugs was determined.”
“In conclusion, our results showed that CBG, a non-psychomimetic cannabinoid from Cannabis Sativa L., can induce an anticancer effect in two human PDAC cell lines, supporting the ability of cannabinoids to interfere with several pro-tumoral pathways.”
“Cannabis has been used as an herbal remedy for thousands of years, and recent research indicates promising new uses in medicine. So far, some studies have shown cannabinoids to be safe in helping mitigate some cancer-associated complications, including chemotherapy-induced nausea and vomiting, cancer-associated pain, and tumor growth.
Researchers have been particularly interested in the potential uses of cannabinoids in treating cancer due to their ability to regulate cancer-related cell cycle pathways, prompting many beneficial effects, such as tumor growth prevention, cell cycle obstruction, and cell death.
Cannabinoids have been found to affect tumors of the brain, prostate, colon and rectum, breast, uterus, cervix, thyroid, skin, pancreas, and lymph. However, the full potential of cannabinoids is yet to be understood.
This review discusses current knowledge on the promising applications of cannabinoids in treating three different side effects of cancer-chemotherapy-induced nausea and vomiting, cancer-associated pain, and tumor development.
The findings suggest that cannabinoids can be used to address some side effects of cancer and to limit the growth of tumors, though a lack of supporting clinical trials presents a challenge for use on actual patients. An additional challenge will be examining whether any of the over one hundred naturally occurring cannabinoids or dozens of synthetic compounds also exhibit useful clinical properties.
Currently, clinical trials are underway; however, no regulatory agencies have approved cannabinoid use for any cancer symptoms beyond antinausea.”
“Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects.
A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy.
Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance.
Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids’ active interventional clinical trials.
The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.”
“Objective: Cancer ranks first among the causes of morbidity and mortality all over the world, and it is expected to continue to be the main cause of death in the coming years. Therefore, new molecular targets and therapeutic strategies are urgently needed. In many cases, some reports show increased levels of endocannabinoids and their receptors in cancer, a condition often associated with tumour aggressiveness. Recent studies have suggested that cannabinoid-1/2 receptors contribute to tumour growth in a variety of cancers, including pancreatic, colon, prostate, and breast cancer. Understanding how cannabinoids can regulate key cellular processes involved in tumorigenesis, such as: cell proliferation and cell death, is crucial to improving existing and new therapeutic approaches for the cancer patients. The present study was aimed to characterize the in-vitro effect of L-759633 (a selective CB2 receptor agonist), ACPA (a selective CB1 receptor agonist) and ACEA (a selective CB1 receptor agonist) on the cell proliferation, clonogenicity, and apoptosis in pancreatic (PANC1) and breast (MDA-MB-231) cancer cells.
Methods: The viability and/or proliferation of cells were detected by MTS assay. A clonogenic survival assay was used to detect the ability of a single cell to grow into a colony. Apoptosis was determined with Annexin V staining (Annexin V-FITC/PI test) and by analyzing the expression of Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2).
Results: We found that selective CB1/2 agonists suppressed cell proliferation, clonogenicity and induced proapoptotic function in human PANC1 pancreatic and MDA-MB-231 breast cancer cells. Based on our findings, these agonists led to the inhibition of both cell viability and clonogenic growth in a dose dependent manner. CB1/2 agonists were observed to induce intrinsic apoptotic pathway by upregulating Bax, while downregulating Bcl-2 expression levels.
Conclusion: Our data suggests that CB1/2 agonists have the therapeutic potential through the inhibition of survival of human PANC1 pancreatic and MDA-MB-231 breast cancer cells and also might be linked with further cellular mechanisms for the prevention.”
“Background: Pancreatic cancer is considered a rare type of cancer, but the mortality rate is high. Cannabinoids extracted from the cannabis plant have been interested as an alternative treatment in cancer patients. Only a few studies are available on the antitumor effects of cannabinoids in pancreatic cancer. Therefore, this study aims to evaluate the antitumor effects of cannabinoids in pancreatic cancer xenografted mouse model.
Materials and methods: Twenty-five nude mice were subcutaneously transplanted with a human pancreatic ductal adenocarcinoma cell line (Capan-2). All mice were randomly assigned into 5 groups including negative control (gavage with sesame oil), positive control (5 mg/kg 5-fluorouracil intraperitoneal administration), and cannabinoids groups that daily received THC:CBD, 1:6 at 1, 5, or 10 mg/kg body weight for 30 days, respectively. Xenograft tumors and internal organs were collected for histopathological examination and immunohistochemistry.
Results: The average tumor volume was increased in all groups with no significant difference. The average apoptotic cells and caspase-3 positive cells were significantly increased in cannabinoid groups compared with the negative control group. The expression score of proliferating cell nuclear antigen in positive control and cannabinoids groups was decreased compared with the negative control group.
Conclusions: Cannabinoids have an antitumor effect on the Capan-2-derived xenograft mouse model though induce apoptosis and inhibit proliferation of tumor cells in a dose-dependent manner.”
“In conclusion, cannabinoid treatment in mice was not affected by weight gain and blood profiles. It can induce apoptosis and inhibit the proliferation of human pancreatic ductal adenocarcinoma cells in a dose-dependent manner. This study suggested that cannabinoids have an antitumor effect on a human pancreatic ductal adenocarcinoma cell line (Capan-2)-derived xenograft mouse model.”
“The use of medical cannabis (MC) to treat cancer-related symptoms is rising. However, there is a lack of long-term trials to assess the benefits and safety of MC treatment in this population. In this work, we followed up prospectively and longitudinally on the effectiveness and safety of MC treatment.
Oncology patients reported on multiple symptoms before and after MC treatment initiation at one-, three-, and 6-month follow-ups. Oncologists reported on the patients’ disease characteristics. Intention-to-treat models were used to assess changes in outcomes from baseline. MC treatment was initiated by 324 patients and 212, 158 and 126 reported at follow-ups.
Most outcome measures improved significantly during MC treatment for most patients (p < 0.005). Specifically, at 6 months, total cancer symptoms burden declined from baseline by a median of 18%, from 122 (82–157) at baseline to 89 (45–138) at endpoint (−18.98; 95%CI= −26.95 to −11.00; p < 0.001). Reported adverse effects were common but mostly non-serious and remained stable during MC treatment.
The results of this study suggest that MC treatment is generally safe for oncology patients and can potentially reduce the burden of associated symptoms with no serious MC-related adverse effects.
The main finding of the current study is that most cancer comorbid symptoms improved significantly during 6 months of MC treatment.
Additionally, we found that MC treatment in cancer patients was well tolerated and safe.”