The use of cannabinoids as anticancer agents.

Cover image

“It is well-established that cannabinoids exert palliative effects on some cancer-associated symptoms. In addition evidences obtained during the last fifteen years support that these compounds can reduce tumour growth in animal models of cancer.

Cannabinoids have been shown to activate an ER-stress related pathway that leads to the stimulation of autophagy-mediated cancer cell death.

In addition, cannabinoids inhibit tumour angiogenesis and decrease cancer cell migration.

The mechanisms of resistance to cannabinoid anticancer action as well as the possible strategies to develop cannabinoid-based combinational therapies to fight cancer have also started to be explored.

In this review we will summarize these observations (that have already helped to set the bases for the development of the first clinical studies to investigate the potential clinical benefit of using cannabinoids in anticancer therapies) and will discuss the possible future avenues of research in this area.” http://www.ncbi.nlm.nih.gov/pubmed/26071989

“… cannabinoids have been shown to alleviate nausea and vomit induced by chemotherapy and several cannabinoid-based medicines [Marinol (THC) and Cesamet (nabilone, a synthetic analogue of THC)] are approved for this purpose. Cannabinoids also inhibit pain, and Sativex (a standardized cannabis extract) has been approved in Canada for the treatment of cancer-associated pain. Other potential palliative effects of cannabinoids in oncology include appetite stimulation and attenuation of wasting. In addition to these palliative actions of cannabinoids in cancer patients, THC and other cannabinoids exhibit antitumour effects in animal models of cancer… a large body of scientific evidences strongly support THC and other cannabinoid agonists exert anticancer actions in preclinical models of cancer… In conclusion there exist solid scientific evidences supporting that cannabinoids exhibit a remarkable anticancer activity in preclinical models of cancer. Since these agents also show an acceptable safety profile, clinical studies aimed at testing them as single agents or in combinational therapies are urgently needed.” http://www.sciencedirect.com/science/article/pii/S0278584615001190

Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects.

“A multitude of physiological effects and putative pathophysiological roles have been proposed for the endogenous cannabinoid system in the gastrointestinal tract, liver and pancreas.

These range from effects on epithelial growth and regeneration, immune function, motor function, appetite control, fibrogenesis and secretion.

Cannabinoids have the potential for therapeutic application in gut and liver diseases.

Two exciting therapeutic applications in the area of reversing hepatic fibrosis as well as antineoplastic effects may have a significant impact in these diseases.

This review critically appraises the experimental and clinical evidence supporting the clinical application of cannabinoid receptor-based drugs in gastrointestinal, liver and pancreatic diseases.

Application of modern pharmacological principles will most probably expand the selective modulation of the cannabinoid system peripherally in humans.

We anticipate that, in addition to the approval in several countries of the CB(1) antagonist, rimonabant, for the treatment of obesity and associated metabolic dysfunctions, other cannabinoid modulators are likely to have an impact on human disease in the future, including hepatic fibrosis and neoplasia.”

http://www.ncbi.nlm.nih.gov/pubmed/18397936

http://www.thctotalhealthcare.com/category/liver-disease/

Endocannabinoid system in cancer cachexia.

Image result for current opinion in clinical nutrition & metabolic care

“More than 60% of advanced cancer patients suffer from anorexia and cachexia.

This review focuses on the possible mechanisms by which the endocannabinoid system antagonizes cachexia-anorexia processes in cancer patients and how it can be tapped for therapeutic applications.

Cannabinoids stimulate appetite and food intake…

Cannabinoid type 1 receptor activation stimulates appetite and promotes lipogenesis and energy storage.

Further study of cancer-cachexia pathophysiology and the role of endocannabinoids will help us to develop cannabinoids without psychotropic properties, which will help cancer patients suffering from cachexia and improve outcomes of clinical antitumor therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17563462

The endocannabinoid signaling system in cancer.

Image result for trends in pharmacological sciences

“The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancerpathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/23602129

Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility

“Pancreatic cancer is a leading cause of cancer death worldwide… Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior.

…the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts.

Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells.

This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.”

http://www.nature.com/labinvest/journal/v89/n4/full/labinvest20095a.html

http://www.thctotalhealthcare.com/category/pancreatic-cancer/

Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

“The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated…

delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP… respectively…

These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.”

http://www.ncbi.nlm.nih.gov/pubmed/1321935

Anandamide, a naturally-occurring agonist of the cannabinoid receptor, blocks adenylate cyclase at the frog neuromuscular junction.

“Anandamide (arachydonylethanolamide) is a naturally-occurring ligand of the canabinoid receptor. When anandamide binds to its receptor, adenylate cyclase is inhibited…

The conclusions are that the motor nerve terminal has a cannabinoid receptor.

The binding of anandamide to this receptor seems to block adenylate cyclase.”

http://www.ncbi.nlm.nih.gov/pubmed/7953630

The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling.

“Two cannabinoid receptors, designated neuronal (or CB1) and peripheral (or CB2), have recently been cloned. Activation of CB1 receptors leads to inhibition of adenylate cyclase and N-type voltage-dependent Ca2+ channels.

Here we show, using a CB2 transfected Chinese hamster ovary cell line, that this receptor binds a variety of tricyclic cannabinoid ligands as well as the endogenous ligand anandamide.

Activation of the CB2 receptor by various tricyclic cannabinoids inhibits adenylate cyclase activity and this inhibition is pertussis toxin sensitive indicating that this receptor is coupled to the Gi/G(o) GTP-binding proteins…

These results characterize the CB2 receptor as a functional and distinctive member of the cannabinoid receptor family.”

http://www.ncbi.nlm.nih.gov/pubmed/7498464

 

Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model.

“Extensive structure-activity relationship studies have demonstrated that specific requirements within the cannabinoid structure are necessary to produce potent analgesia.

A three-point association between the agonist and the receptor mediating analgesia consists of: 1) the C ring hydroxyl, 2) the phenolic A ring hydroxyl, and 3) the A ring alkyl hydrophobic side chain. Potent tricyclic and bicyclic structures were synthesized as “nonclassical” cannabinoid analgetics that conform to this agonist-receptor three-point interaction model.

At the cellular level, centrally active cannabinoid drugs inhibit adenylate cyclase activity in a neuroblastoma cell line. The structure-activity relationship profile for inhibition of adenylate cyclase in vitro was consistent with this same three-point association of agonists with the receptor.

A correlation exists between the potency of drugs to produce analgesia in vivo and to inhibit adenylate cyclase in vitro.

Based on the parallels in structure-activity relationships and the enantioselective effects, it is postulated that the receptor that is associated with the regulation of adenylate cyclase in vitro may be the same receptor as that mediating analgesia in vivo.

A conceptualization of the cannabinoid analgetic receptor is presented.”

http://www.ncbi.nlm.nih.gov/pubmed/3352594

Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase.

“A putative endogenous cannabinoid ligand, arachidonylethanolamide (termed “anandamide”), was isolated recently from porcine brain.

Here we demonstrate that this compound is a specific cannabinoid agonist and exerts its action directly via the cannabinoid receptors.

Anandamide specifically binds to membranes from cells transiently (COS) or stably (Chinese hamster ovary) transfected with an expression plasmid carrying the cannabinoid receptor DNA but not to membranes from control nontransfected cells.

Moreover, anandamide inhibited the forskolin-stimulated adenylate cyclase in the transfected cells and in cells that naturally express cannabinoid receptors (N18TG2 neuroblastoma) but not in control nontransfected cells. As with exogenous cannabinoids…

These data indicate that anandamide is an endogenous agonist that may serve as a genuine neurotransmitter for the cannabinoid receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/8515284