Effect of medical cannabis on thermal quantitative measurements of pain in patients with Parkinson’s disease.

Image result for european journal of pain

“Cannabis can alleviate pain of various etiologies.

This study assessed the effect of cannabis on motor symptoms and pain parameters in patients with Parkinson’s disease (PD).

CONCLUSIONS:

Cannabis improved motor scores and pain symptoms in PD patients, together with a dissociate effect on heat and cold pain thresholds. Peripheral and central pathways are probably modulated by cannabis.

SIGNIFICANCE:

Quantitative sensory test results are significantly altered following cannabis consumption in patients with PD. Cannabis probably acts on pain in PD via peripheral and central pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/27723182

Cannabinoids and Dementia: A Review of Clinical and Preclinical Data.

 pharmaceuticals-logo

“The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia.

We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD).

Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro.

However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce.

While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia.

Further research is needed, including in vivo models of dementia and human studies.”

https://www.ncbi.nlm.nih.gov/pubmed/27713372

Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

Image result for Front Neurosci.

“Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson’s disease, Huntington’s chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.”

THC (Δ9-Tetrahydrocannabinol) Exerts Neuroprotective Effect in Glutamate-affected Murine Primary Mesencephalic Cultures Through Restoring Mitochondrial Membrane Potential and Anti-apoptosis Involving CB1 Receptor-dependent Mechanism.

Phytotherapy Research

“Aging-related neurodegenerative diseases, such as Parkinson’s disease (PD) or related disorders, are an increasing societal and economic burden worldwide.

Δ9-Tetrahydrocannabinol (THC) is discussed as a neuroprotective agent in several in vitro and in vivo models of brain injury. However, the mechanisms by which THC exhibits neuroprotective properties are not completely understood.

In the present study, we investigated neuroprotective mechanisms of THC in glutamate-induced neurotoxicity in primary murine mesencephalic cultures, as a culture model for PD.

THC protected dopaminergic neurons and other cell types of primary dissociated cultures from glutamate-induced neurotoxicity.

Moreover, THC significantly counteracted the glutamate-induced mitochondrial membrane depolarization and apoptosis.

In conclusion, THC exerts anti-apoptotic and restores mitochondrial membrane potential via a mechanism dependent on CB1 receptor.

It strengthens the fact that THC has a benefit on degenerative cellular processes occurring, among others, in PD and other neurodegenerative diseases by slowing down the progression of neuronal cell death.”

https://www.ncbi.nlm.nih.gov/pubmed/27654887

http://onlinelibrary.wiley.com/wol1/doi/10.1002/ptr.5712/full

pain in Extrapyramidal Neurodegenerative Diseases.

Image result for Clin J Pain.

“Pain is one of the most common non-motor symptoms of Parkinson disease (PD) and other Parkinson plus syndromes, with a major effect on quality of life.

The aims of the study were to examine the prevalence and characteristics of pain in PD and other Parkinson plus syndromes and patient use and response to pain medications.

The most beneficial analgesics were nonsteroidal anti-inflammatory drugs and medical cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/27623111

Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat.

“Essential tremor (ET) is a neurological disorder with unknown etiology. Its symptoms include cerebellar motor disturbances, cognitive and personality changes, hearing and olfactory deficits. Excitotoxic cerebellar climbing fibre hyperactivity may underlie essential tremor and has been emulated in rodents by systemic harmaline administration.

Cannabinoid receptor agonists can cause motor disturbances although there are also anecdotal reports of therapeutic benefits of cannabis in motor disorders. We set out to establish the effects of cannabinoid type 1 receptor agonism and antagonism in an established rodent model of ET using a battery of accepted behaviour assays in order to determine risk and therapeutic potential of endocannabinoid system modulation in ET.

Overall, harmaline induced robust tremor that was typically worsened across the measured behavioural domains by CB type 1 (CB1 ) receptor agonism but ameliorated by cannabinoid type 1 receptor antagonism.

CONCLUSIONS AND IMPLICATIONS:

These results provide the first evidence of effects of endocannabinoid system modulation on motor function in the harmaline model of essential tremor and suggest that CB1 receptor manipulation warrants clinical investigation as a therapeutic approach to protection against behavioural disturbances associated with essential tremor.”

http://www.ncbi.nlm.nih.gov/pubmed/27545646

CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease.

“The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice.

Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.”

http://www.ncbi.nlm.nih.gov/pubmed/27534533

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).” http://www.ncbi.nlm.nih.gov/pubmed/27531971

Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease.

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).

The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD.

In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD.

Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP.

The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27531971

A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene.

“The central cannabinoid receptor (CB1) mediates the pharmacological activities of cannabis, the endogenous agonist anandamide and several synthetic agonists.

The cloning of the human cannabinoid receptor (CNR1) gene facilitates molecular genetic studies in disorders like Gilles de la Tourette syndrome (GTS), obsessive compulsive disorder (OCD), Parkinsons disease, Alzheimers disease or other neuro psychiatric or neurological diseases, which may be predisposed or influenced by mutations or variants in the CNR1 gene.

We detected a frequent silent mutation (1359G–>A) in codon 453 (Thr) of the CNR1 gene that turned out to be a common polymorphism in the German population. Allele frequencies of this polymorphism are 0.76 and 0.24, respectively.

We developed a simple and rapid polymerase chain reaction (PCR)-based assay by artificial creation of a Msp I restriction site in amplified wild-type DNA (G-allele), which is destroyed by the silent mutation (A-allele).

The intragenic CNR1 polymorphism 1359(G/A) should be useful for association studies in neuro psychiatric disorders which may be related to anandamide metabolism disturbances.”

http://www.ncbi.nlm.nih.gov/pubmed/10441206

Type-2 Cannabinoid Receptors in Neurodegeneration.

“Based on its wide expression in immune cells, type 2 cannabinoid (CB2) receptors were traditionally thought to act as “peripheral receptors” with an almost exclusively immunomodulatory function. However, their recent identification in mammalian brain areas, as well as in distinct neuronal cells, has opened the way to a re-consideration of CB2 signaling in the context of brain pathophysiology, synaptic plasticity and neuroprotection. To date, accumulated evidence from several independent preclinical studies has offered new perspectives on the possible involvement of CB2signaling in brain and spinal cord traumatic injury, as well as in the most relevant neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease and Huntington’s chorea. Here, we will review available information on CB2 in these disease conditions, along with data that support also its therapeutic potential to treat them.”

http://www.ncbi.nlm.nih.gov/pubmed/27450295