The bright side of psychoactive substances: cannabinoid-based drugs in motor diseases.

“Psychoactive substances are associated with the idea of drugs with high addictive liability, affecting mental states, cognition, emotion and motor behavior. However these substances can modify synaptic transmission and help to disclose some mechanisms underlying alterations in brain processing and pathophysiology of motor disease. Hence, the “bright side” of cannabinoid-based drugs must be thoroughly examined to be identified within the latter framework.

We will analyze the preclinical and clinical evidence of cannabinoid-based drugs, discussing their therapeutic value in basal ganglia motor disorders such as Parkinson’s disease and Huntington disease.

Expert commentary: despite the knowledge acquired in the last years, the therapeutic potential of cannabinoid-based drugs should be further tested by novel routes of investigation. This should be focused on the role of cannabinoid signaling system in mitochondrial function as well as on the physical and functional interaction with other key receptorial targets belonging to this network.”

http://www.ncbi.nlm.nih.gov/pubmed/27373318

Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis.

Related image

“Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson’s disease (PD). The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use.

The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress.

We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content.

… unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress.

We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27366949

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=10314&path[]=32486

Endocannabionoid System in Neurological Disorders.

“Several studies support the evidence that the endocannabinoid system and cannabimimetic drugs might have therapeutic potential in numerous pathologies. These pathologies range from neurological disorders, atherosclerosis, stroke, cancer to obesity/metabolic syndrome and others.

In this paper we review the endocannabinoid system signaling and its alteration in neurodegenerative disorders like multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease and discuss the main findings about the use of cannabinoids in the therapy of these pathologies.

Despite different etiologies, neurodegenerative disorders exhibit similar mechanisms like neuro-inflammation, excitotoxicity, deregulation of intercellular communication, mitochondrial dysfunction and disruption of brain tissue homeostasis.

Current treatments ameliorate the symptoms but are not curative.

Interfering with the endocannabinoid signaling might be a valid therapeutic option in neuro-degeneration.

To this aim, pharmacological intervention to modulate the endocannabinoid system and the use of natural and synthetic cannabimimetic drugs have been assessed. CB1 and CB2 receptor signaling contributes to the control of Ca2+ homeostasis, trophic support, mitochondrial activity, and inflammatory conditions.

Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27364363

β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

“Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area.

The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD.

The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities.”

http://www.ncbi.nlm.nih.gov/pubmed/27316720

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinsońs disease.

“Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion.

Modulation of the levels of the endocannabinoid 2-arachidonoyl glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinsońs disease.

In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease.

Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinsońs disease in two distinct experimental models that is mediated by cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27318096

Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson’s disease.

“In recent years, it has become evident that Parkinson’s disease is associated with a self-sustaining cycle of neuroinflammation and neurodegeneration, with dying neurons activating microglia, which, once activated, can release several factors that kill further neurons.

One emerging pharmacological target that has the potential to break this cycle is the microglial CB2 receptor which, when activated, can suppress microglial activity and reduce their neurotoxicity.

However, very little is known about CB2 receptor expression in animal models of Parkinson’s disease which is essential for valid preclinical assessment of the anti-Parkinsonian efficacy of drugs targeting the CB2 receptor.

Therefore, the aim of this study was to investigate and compare the changes that occur in CB2 receptor expression in environmental and inflammation-driven models of Parkinson’s disease.

Thus, this study has shown that CB2 receptor expression is dysregulated in animal models of Parkinson’s disease, and has also revealed significant differences in the level of dysregulation between the models themselves.

This study indicates that these models may be useful for further investigation of the CB2 receptor as a target for anti-inflammatory disease modification in Parkinson’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/27317300

Reversal effect of simvastatin on the decrease in cannabinoid receptor 1 density in 6-hydroxydopamine lesioned rat brains.

“Cannabinoid 1(CB1) receptors are closely correlated to the dopaminergic system and involved in cognitive function. Since statins have been used to regulate the progression of Parkinson’s disease (PD) via its anti-inflammation and neuroprotective effects, we asked if statins affect the CB1 receptors in the 6-hydroxydopamine (6-OHDA) lesioned rat.

Our data suggest a critical role of CB1 receptors in treating PD with simvastatin, and implicate CB1 receptors as a potential therapeutic target in the treatment of PD.”

http://www.ncbi.nlm.nih.gov/pubmed/27155397

Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice.

“Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa plant that produces antipsychotic effects in rodents and humans.

It also reverses L-dopa-induced psychotic symptoms and improves motor function in Parkinson’s patients. This latter effect raised the possibility that CBD could have beneficial effects on motor related striatal disorders.

To investigate this possibility we evaluated if CBD would prevent catalepsy induced by drugs with distinct pharmacological mechanisms.

These findings indicate that CBD can attenuate catalepsy caused by different mechanisms (D2 blockade, NOS inhibition and CB1 agonism) via 5-HT1A receptor activation, suggesting that it could be useful in the treatment of striatal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23791616

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice.

“Most of cases of Parkinson’s disease (PD) have a sporadic origin, with their causes mostly unknown, although overexposure to some environmental factors has been found to occur in some cases. Other forms of parkinsonism are the consequence of dominant or recessive mutations in specific genes, e.g. α-synuclein, parkin and, more recently, leucine-rich repeat kinase 2 (LRRK2), whose G2019S mutation represents the most prevalent form of late-onset, autosomal dominant familial PD.

A transgenic mouse model expressing the G2019S mutation of LRRK2 is already available and apparently may represent a valuable experimental model for investigating PD pathogenesis and novel treatments.

We designed a long-term study with these animals aimed at: (i) elucidating the changes experienced by the endocannabinoid signaling system in the basal ganglia during the progression of the disease in these mice, paying emphasis in the CB2 receptor, which has emerged as a promising target in PD, and (ii) evaluating the potential of compounds selectively activating this CB2 receptor, as disease-modifying agents in these mice.

Our results unequivocally demonstrate that LRRK2 transgenic mice develop motor impairment consisting of small anomalies in rotarod performance (presumably reflecting a deficit in motor coordination and dystonia) and a strong deficiency in the hanging-wire test (reflecting muscle weakness), rather than hypokinesia which was difficult to be demonstrated in the actimeter. These behavioral responses occurred in absence of any evidence of reactive gliosis and neuronal losses, as well as synaptic deterioration in the basal ganglia, except an apparent impairment in autophagy reflected by elevated LAMP-1 immunolabelling in the striatum and substantia nigra.

Furthermore, there were no changes in the status of the CB2 receptor, as well as in other elements of the endocannabinoid signaling, in the basal ganglia, but, paradoxically, the selective activation of this receptor partially reversed the deficits in the hanging-wire test of LRRK2 transgenic mice. This was accompanied by normalization in LAMP-1 immunolabelling in the basal ganglia, although it is possible that other CNS structures, remaining to be identified, are involved in the behavioral improvement.

In summary, our data support the interest of the CB2 receptor as a potential pharmacological target in LRRK2 transgenic mice, although the neuronal substrates underlying these benefits might be not completely related to the basal ganglia and to the presumed parkinsonian features of these mice.”  http://www.ncbi.nlm.nih.gov/pubmed/27063942