Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease.

“Inflammation is an important pathogenic factor in Parkinson’s disease (PD), so that it can contribute to kill dopaminergic neurons of the substantia nigra and to enhance the dopaminergic denervation of the striatum.

The cannabinoid type-2 (CB2) receptor has been investigated as a potential anti-inflammatory and neuroprotective target in different neurodegenerative disorders, but still limited evidence has been collected in PD.

Here, we show for the first time that CB2 receptors are elevated in microglial cells recruited and activated at lesioned sites in the substantia nigra of PD patients compared to control subjects.

Using this experimental model, we recently described a much more intense deterioration of tyrosine hydroxylase (TH)-containing nigral neurons in CB2 receptor-deficient mice compared to wild-type animals, supporting a potential neuroprotective role for this receptor. In the present study, we further explored this issue…

In conclusion, we have provided the first evidence on the up-regulation of CB2receptors in glial elements in postmortem tissues of PD patients, which has been confirmed in an inflammatory model of this disease. In addition, we have provided evidence on the benefits derived from their activation in relation with the activation of microglial cells, the infiltration of macrophages and also certain capability of these cells to generate proinflammatory factors.”

http://www.ncbi.nlm.nih.gov/pubmed/25863279

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Self-reported efficacy of cannabis and other complementary medicine modalities by Parkinson’s disease patients in colorado.

“Complementary and alternative medicine (CAM) is frequently used by Parkinson’s disease (PD) patients. We sought to provide information on CAM use and efficacy in PD patients in the Denver metro area with particular attention to cannabis use given its recent change in legal status.

Self-reported improvement related to the use of CAM was highest for massage, art therapy, music therapy, and cannabis.

While only 4.3% of our survey responders reported use of cannabis, it ranked among the most effective CAM therapies.

Conclusions. Overall, our cross-sectional study was notable for a high rate of CAM utilization amongst PD patients and high rates of self-reported efficacy across most CAM modalities.

Cannabis was rarely used in our population but users reported high efficacy, mainly for nonmotor symptoms.”

http://www.ncbi.nlm.nih.gov/pubmed/25821504

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363882/

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial.

“Parkinson’s disease (PD) has a progressive course and is characterized by the degeneration of dopaminergic neurons.

… the endocannabinoid system has emerged as a promising target.

…Our findings point to a possible effect of CBD in improving quality of life measures in PD patients with no psychiatric comorbidities…”

http://www.ncbi.nlm.nih.gov/pubmed/25237116

http://www.thctotalhealthcare.com/category/parkinsons-disease/

The endocannabinoid system: a putative role in neurodegenerative diseases.

An external file that holds a picture, illustration, etc.
Object name is ijhrba-02-100-i001.jpg

“Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases.

The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases

Scientific evidence shows that cannabis can provide symptomatic relief in several neurodegenerative diseases such as multiple sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases, and amyotrophic lateral sclerosis. These findings imply that a hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of these diseases. Moreover, given the abundance of CB1 receptors in areas associated with movement and executive thought, researchers’ interest has often focused on endocannabinoid levels in patients with motor degenerative disorders.

CONCLUSIONS:

The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070159/

Cannabidiol can improve complex sleep-related behaviours associated with rapid eye movement sleep behaviour disorder in Parkinson’s disease patients: a case series.

“Cannabidiol (CBD) is the main non-psychotropic component of the Cannabis sativa plant. REM sleep behaviour disorder (RBD) is a parasomnia characterized by the loss of muscle atonia during REM sleep associated with nightmares and active behaviour during dreaming. We have described the effects of CBD in RBD symptoms in patients with Parkinson’s disease.

CASES SUMMARY:

Four patients treated with CBD had prompt and substantial reduction in the frequency of RBD-related events without side effects.

WHAT IS NEW AND CONCLUSION:

This case series indicates that CBD is able to control the symptoms of RBD.”

http://www.ncbi.nlm.nih.gov/pubmed/24845114

The influence of cannabinoids on generic traits of neurodegeneration

“In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure.

Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca2+ homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties.

Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment.”

http://onlinelibrary.wiley.com/doi/10.1111/bph.12492/full

Cannabis (Medical Marijuana) Treatment for Motor and Non-Motor Symptoms of Parkinson Disease: An Open-Label Observational Study.

“The use of cannabis as a therapeutic agent for various medical conditions has been well documented…The aim of the present open-label observational study was to assess the clinical effect of cannabis on motor and non-motor symptoms of Parkinson disease (PD).

Analysis of specific motor symptoms revealed significant improvement after treatment…

There was also significant improvement of sleep and pain scores. No significant adverse effects of the drug were observed.

The study suggests that cannabis might have a place in the therapeutic armamentarium of PD.”

http://www.ncbi.nlm.nih.gov/pubmed/24614667

Parkinson’s Symptoms Reduced by Smoking Cannabis – Parkinson Research Foundation

Cannabis_Clones_in_Box

 “Ruth Djaldetti, M.D., of Tel Aviv University in Israel, presented the findings of her research at a recent International Congress on Parkinson’s Disease and Movement Disorders.  She reported improvement in tremor, pain, rigidity and bradykinesia (slowness of movement).  Twenty subjects, all in their mid-sixties, and were rated using the Unified Parkinson’s Disease Rating Scale (UPDRS) both before and after smoking.  Their overall “before” scores were over 30 and within 30 minutes of smoking, their scores dropped to 24..  Their tremor scores averaged 7.5 on the UPDRS before and dropped to a score of 3.5 after smoking cannabis.  Bradykinesia scores dropped from 13.2 to 8.6 and rigidity went from 7.4 to 6.4.  Dr. Djaldetti also saw a marked relief in the pain her subjects were experiencing and this relief of pain led to better sleep and feeling more rested.

This bears out the results of other studies.  A study done in Great Britain that was published in 2011 found the principal ingredient in cannabis provided neuroprotection for people with Parkinson’s disease.  Its neuroprotective properties included reduction of inflammation and control of spasms, making it an ideal drug for treating Parkinson’s.  However, its confusing legal status make it very difficult for people to obtain or consider using and for doctors to even recommend to patients.

Another interesting study done in 2010 found that cannabinoid receptors are located in many parts of the brain and that cannabinoids are produced naturally in the brain.  People with Parkinson’s have even higher levels of endocannabinoids (cannabinoids produced within the brain).  The main ingredient in cannabis, Tetrahydrcannibol (THC) actually increases dopamine production temporarily.  Cannabidiol (CBD) another component of cannabis, also provides neuroprotective properties and has been shown to reduce dystonias .  CDB could be a very vital improvement for treating Parkinson’s, and a recent study has shown it useful in treating certain cancers as well.

While there have been many, many people reporting the anecdotal benefits of smoking cannabis, clinical trials are lagging behind.  Laboratory and animal studies have shown many benefits, but perplexing issues around the legality of cannabis are slowing the efforts and impeding progress.”

http://parkinsonresearchfoundation.org/blog/2013/07/11/parkinsons-symptoms-reduced-by-smoking-cannabis/

Δ9-TETRAHYDROCANNABINOL IS PROTECTIVE THROUGH PPARγ DEPENDENT MITOCHONDRIAL BIOGENESIS IN A CELL CULTURE MODEL OF PARKINSON’S DISEASE

“Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) are neuroprotective in animal and cell culture models of Parkinson’s disease (PD).

In a PD cell culture model we recently demonstrated that Δ9-THC is neuroprotective through activation of the nuclear receptor peroxisomal proliferator-activated receptor γ (PPARγ)…

Here we investigate the effect of Δ9-THC and pioglitazone on mitochondrial biogenesis…

CONCLUSIONS:

Even though Δ9-THC and pioglitazone are both protective against MPP+ only Δ9-THC induces PPARγ dependent mitochondrial biogenesis, a mechanism that may be beneficial for the treatment of PD.”

http://jnnp.bmj.com/content/84/11/e2.58

“Δ⁹-tetrahydrocannabinol (Δ⁹-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson’s disease.” http://www.ncbi.nlm.nih.gov/pubmed/22236282

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract