“Parkinson’s disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death.
Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain’s dopaminergic systems, a condition for which there is now no treatment.
The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson’s disease, making it immensely useful in the treatment of such a debilitating illness.”
“The use of cannabinoids as therapeutic drugs has increased among aging populations recently. Age-related changes in the endogenous cannabinoid system could influence the effects of therapies that target the cannabinoid system. At the preclinical level, cannabidiol (CBD) induces anti-amyloidogenic, antioxidative, anti-apoptotic, anti-inflammatory, and neuroprotective effects. These findings suggest a potential therapeutic role of cannabinoids to neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer.
Emerging evidence suggests that CBD and tetrahydrocannabinol have neuroprotective therapeutic-like effects on dementias. In clinical practice, cannabinoids are being used off-label to relieve symptoms of PD and AD. In fact, patients are using cannabis compounds for the treatment of tremor, non-motor symptoms, anxiety, and sleep assistance in PD, and managing responsive behaviors of dementia such as agitation. However, strong evidence from clinical trials is scarce for most indications.
Some clinicians consider cannabinoids an alternative for older adults bearing Parkinson’s disease and Alzheimer’s dementia with a poor response to first-line treatments. In our concept and experience, cannabinoids should never be considered a first-line treatment but could be regarded as an adjuvant therapy in specific situations commonly seen in clinical practice. To mitigate the risk of adverse events, the traditional dogma of geriatric medicine, starting with a low dose and proceeding with a slow titration regime, should also be employed with cannabinoids. In this review, we aimed to address preclinical evidence of cannabinoids in neurodegenerative disorders such as PD and AD and discuss potential off-label use of cannabinoids in clinical practice of these disorders.”
“Cannabinoids constitute a promising pharmacological approach to treatment of neuropsychiatric disorders in late life.
Overall, cannabinoids compounds are well tolerated and appear to be safer than most psychotropic medication, but given the vulnerability of patients with dementia, they require appropriate monitoring by the clinician.”
“Despite the significant advances in neurology, the cure for neurodegenerative conditions remains a formidable task to date. Among various factors arising from the complex etiology of neurodegenerative diseases, neuroinflammation and oxidative stress play a major role in pathogenesis. To this end, some phytocannabinoids isolated from Cannabis sativa (widely known as marijuana) have attracted significant attention as potential neurotherapeutics. The profound effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of cannabis, has led to the discovery of the endocannabinoid system as a molecular target in the central nervous system (CNS). Cannabidiol (CBD), the major non-psychoactive component of cannabis, has recently emerged as a potential prototype for neuroprotective drug development due to its antioxidant and anti-inflammatory properties and its well-tolerated pharmacological behavior. This review briefly discusses the role of inflammation and oxidative stress in neurodegeneration and demonstrates the neuroprotective effect of cannabidiol, highlighting its general mechanism of action and disease-specific pathways in Parkinson’s disease (PD) and Alzheimer’s disease (AD). Furthermore, we have summarized the preclinical and clinical findings on the therapeutic promise of CBD in PD and AD, shed light on the importance of determining its therapeutic window, and provide insights into identifying promising new research directions.”
“The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.”
“The cannabinoid system has the potential to ameliorate different underlying mechanism involved in the progression of aging-related diseases. Additionally, ECS may represent a promising approach not only for the treatment, but also for the alleviation of age-related disorder-associated symptoms and/or for increasing the efficacy of existing drugs. Moreover, our findings show that cannabinoids may be able to modulate various mechanisms rather than targeting a single dysregulated pathway in age-related diseases. Natural as well as synthetic cannabinoids ameliorate the balance between neurodegeneration and neuroinflammation in neurodegenerative diseases. In addition, they may play an important role in modulating the complex physio-pathology of MS and may be used as immune modulators, neuroprotectors, or remyelination promoters. The modulation of pro-inflammatory cytokines through the endogenous cannabinoid system may have beneficial effects on MS, AD, PD, aging-related musculoskeletal changes, and CVDs. On the other hand, it is clearly now that targeting the ECS with various natural or synthetic compounds may have the theoretical potential of an improved control of cancer progression.”
“Medicinal cannabis has shown promise for the symptomatic treatment of Parkinson’s disease (PD), but patient exposure to whole plant mixtures may be undesirable due to concerns around safety, consistency, regulatory issues, and psychoactivity. Identification of a subset of components responsible for the potential therapeutic effects within cannabis represents a direct path forward for the generation of anti-PD drugs. Using an in silico database, literature reviews, and cell based assays, GB Sciences previously identified and patented a subset of five cannabinoids and five terpenes that could potentially recapitulate the anti-PD attributes of cannabis. While this work represents a critical step towards harnessing the anti-PD capabilities of cannabis, polypharmaceutical drugs of this complexity may not be feasible as therapeutics. In this paper, we utilize a reductionist approach to identify minimal essential mixtures (MEMs) of these components that are amenable to pharmacological formulation. In the first phase, cell-based models revealed that the cannabinoids had the most significant positive effects on neuroprotection and dopamine secretion. We then evaluated the ability of combinations of these cannabinoids to ameliorate a 6-hydroxydopmamine (OHDA)-induced change in locomotion in larval zebrafish, which has become a well-established PD disease model. Equimolar mixtures that each contained three cannabinoids were able to significantly reverse the OHDA mediated changes in locomotion and other advanced metrics of behavior. Additional screening of sixty-three variations of the original cannabinoid mixtures identified five highly efficacious mixtures that outperformed the original equimolar cannabinoid MEMs and represent the most attractive candidates for therapeutic development. This work highlights the strength of the reductionist approach for the development of ratio-controlled, cannabis mixture-based therapeutics for the treatment of Parkinson’s disease.”
“Cannabis has therapeutic promise in PD. However, there is a need to move beyond whole plant extracts and generate safe, reproducible medicines for patients. This paper identified promising minimal essential mixtures of cannabinoids based on a step-wise, strategic approach to reducing the complexity of the plant secondary metabolome. The sequential use of in silico, in vitro, and medium throughput in vivo experimental systems has generated refined, de-risked, mixtures that can now be tested in additional, higher-cost, preclinical model systems of PD.”
“Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets.
Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD).
The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated.
The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA.
The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.”
“Parkinson disease (PD) is the second most progressive neurodegenerative disorder of the central nervous system (CNS) in the elderly, causing motor impediments and cognitive dysfunctions. Dopaminergic (DA) neuron degeneration and α-synuclein (α-Syn) accumulation in substantia nigra pars compacta (SNPc) are the major contributor to this disease. At present, the disease has no effective treatment. Many recent studies focus on identifying novel therapeutics that provide benefits to stop disease advancement in PD patients.
Cannabidiol (CBD) is a cannabinoid derived from the Cannabis Sativa plant and possesses anti-depressive, anti-inflammatory, and antioxidative effects. The present study aims to evaluate the neuroprotective effect of CBD in transgenic C. elegans PD models.
We observed that CBD at 0.025mM (24.66%), 0.05mM (52.41%) and 0.1mM (71.36%) diminished DA neuron degenerations induced by 6-hydroxydopamine (6-OHDA), reduced (0.025, 27.1%), (0.05, 38.9%), (0.1, 51.3%) food-sensing behavioural disabilities in BZ555, reduced 40.6%, 56.3%, 70.2% the aggregative toxicity of α-Syn and expanded the nematodes’ lifespan up to 11.5%, 23.1%, 28.8%, dose-dependently. Moreover, CBD augmented the ubiquitin-like proteasomes 28.11%, 43.27, 61.33% and SOD-3 expressions by about 16.4%, 21.2%, 44.8% in transgenic models. Further, we observed the antioxidative role of CBD by reducing 33.2%, 41.4%, 56.7% reactive oxygen species in 6-OHDA intoxicated worms.
Together, these findings supported CBD as an anti-parkinsonian drug and may exert its effects by raising lipid depositions to enhance proteasome activity and reduce oxidative stress via the antioxidative pathway.”
“CBD neuroprotective effects were assessed in pharmacological transgenic models of PD. According to our assessment, CBD promoted neuroprotection via recovery of degenerated DA neurons in 6-OHDA-exposed C. elegans and significantly reduced the α-Syn accumulations. Furthermore, CBD enhanced the lipid depositions, ubiquitin-like proteasome activities, food sensing behavior, and lifespan in the treated animals. CBD could restrain PD patients’ inflammations and decline DA neuron damage via leading.”
“Cannabidiol (CBD), the major non-psychoactive phytocannabinoid present in the plant Cannabis sativa, has displayed beneficial pharmacological effects in the treatment of several neurological disorders including, epilepsy, Parkinson’s disease, and Alzheimer’s disease. In particular, CBD is able to modulate different receptors in the endocannabinoid system, some of which belong to the family of G-protein-coupled receptors (GPCRs). Notably, while CBD is able to antagonize some GPCRs in the endocannabinoid system, it also seems to activate others. The details of this dual contrasting functional feature of CBD, that is, displaying antagonistic and (possible) agonistic ligand properties in related receptors, remain unknown. Here, using computational methods, we investigate the interacting determinants of CBD in two closely related endocannabinoid-activated GPCRs, the G-protein-coupled receptor 55 (GPR55) and the cannabinoid type 1 receptor (CB1). While in the former, CBD has been demonstrated to function as an antagonist, the way by which CBD modulates the CB1 receptor remains unclear. Namely, CBD has been suggested to directly trigger receptor’s activation, stabilize CB1 inactive conformations or function as an allosteric modulator. From microsecond-length unbiased molecular dynamics simulations, we found that the presence of the CBD ligand in the GPR55 receptor elicit conformational changes associated with antagonist-bound GPCRs. In contrast, when the GPR55 receptor is simulated in complex with the selective agonist ML186, agonist-like conformations are sampled. These results are in agreement with the proposed modulatory function of each ligand, showing that the computational techniques utilized to characterize the GPR55 complexes correctly differentiate the agonist-bound and antagonist-bound systems. Prompted by these results, we investigated the role of the CBD compound on the CB1 receptor using similar computational approaches. The all-atom MD simulations reveal that CBD induces conformational changes linked with agonist-bound GPCRs. To contextualize the results we looked into the CB1 receptor in complex with a well-established antagonist. In contrast to the CBD/CB1 complex, when the CB1 receptor is simulated in complex with the ligand antagonist AM251, inactive conformations are explored, showing that the computational techniques utilized to characterize the CB1 complexes correctly differentiate the agonist-bound and antagonist-bound systems. In addition, our results suggest a previously unknown sodium-binding site located in the extracellular domain of the CB1 receptor. From our detailed characterization, we found particular interacting loci in the binding sites of the GPR55 and the CB1 receptors that seem to be responsible for the differential functional features of CBD. Our work will pave the way for understanding the CBD pharmacology at a molecular level and aid in harnessing its potential therapeutic use.”
“Background: Medical cannabinoids differ in their pharmacology and may have different treatment effects. We aimed to conduct a pharmacology-based systematic review (SR) and meta-analyses of medical cannabinoids for efficacy, retention and adverse events.
Results: In total, 152 RCTs (12,123 participants) were analysed according to the type of the cannabinoid, outcome and comparator used, resulting in 84 comparisons. Significant therapeutic effects of medical cannabinoids show a large variability in the grade of evidence that depends on the type of cannabinoid. CBD has a significant therapeutic effect for epilepsy (SMD – 0.5[CI – 0.62, – 0.38] high grade) and Parkinsonism (- 0.41[CI – 0.75, – 0.08] moderate grade). There is moderate evidence for dronabinol for chronic pain (- 0.31[CI – 0.46, – 0.15]), appetite (- 0.51[CI – 0.87, – 0.15]) and Tourette (- 1.01[CI – 1.58, – 0.44]) and moderate evidence for nabiximols on chronic pain (- 0.25[- 0.37, – 0.14]), spasticity (- 0.36[CI – 0.54, – 0.19]), sleep (- 0.24[CI – 0.35, – 0.14]) and SUDs (- 0.48[CI – 0.92, – 0.04]). All other significant therapeutic effects have either low, very low, or even no grade of evidence. Cannabinoids produce different adverse events, and there is low to moderate grade of evidence for this conclusion depending on the type of cannabinoid.
Conclusions: Cannabinoids are effective therapeutics for several medical indications if their specific pharmacological properties are considered. We suggest that future systematic studies in the cannabinoid field should be based upon their specific pharmacology.”
“Cannabinoids are effective therapeutics for several medical indications if their specific pharmacological properties are considered. We suggest that future systematic studies in the cannabinoid field should be based upon their specific pharmacology.”
“The lack of effective treatment for neurological disorders has encouraged the search for novel therapeutic strategies. Remarkably, neuroinflammation provoked by the activated microglia is emerging as an important therapeutic target for neurological dysfunction in the central nervous system. In the pathological context, the hyperactivation of microglia leads to neuroinflammation through the release of neurotoxic molecules, such as reactive oxygen species, proteinases, proinflammatory cytokines and chemokines.
Cannabidiol (CBD) is a major pharmacologically active phytocannabinoids derived from Cannabis sativa L. CBD has promising therapeutic effects based on mounting clinical and preclinical studies of neurological disorders, such as epilepsy, multiple sclerosis, ischemic brain injuries, neuropathic pain, schizophrenia and Alzheimer’s disease.
A number of preclinical studies suggested that CBD exhibited potent inhibitory effects of neurotoxic molecules and inflammatory modulators, highlighting its remarkable therapeutic potential for the treatment of numerous neurological disorders. However, the molecular mechanisms of action underpinning CBD’s effects on neuroinflammation appear to be complex and are poorly understood.
This review summarises the anti-neuroinflammatory activities of CBD against various neurological disorders with a particular focus on their main molecular mechanisms of action, which were related to the downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB and IFN-β-JAK-STAT pathways. We also illustrate the pharmacological action of CBD’s derivatives focusing on their anti-neuroinflammatory and neuroprotective effects for neurological disorders. We included the studies that demonstrated synergistic enhanced anti-neuroinflammatory activity using CBD and other biomolecules.
The studies that are summarised in the review shed light on the development of CBD, including its derivatives and combination preparations as novel therapeutic options for the prevention and/or treatment of neurological disorders where neuroinflammation plays an important role in the pathological components.”
“Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. The preclinical studies summarised in this review supported the therapeutic use of CBD in treating neurological disorders from its action in addressing microglia-mediated neuroinflammation. The findings of this review shed light on the development of CBD and relevant compounds as novel and more advantageous therapeutics to prevent or treat neurological disorders by targeting microglia-mediated neuroinflammation.”