Neuroprotective and Symptomatic Effects of Cannabidiol in an Animal Model of Parkinson’s Disease

ijms-logo“Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia Nigra pars compacta, leading to classical PD motor symptoms. Current therapies are purely symptomatic and do not modify disease progression.

Cannabidiol (CBD), one of the main phytocannabinoids identified in Cannabis Sativa, which exhibits a large spectrum of therapeutic properties, including anti-inflammatory and antioxidant effects, suggesting its potential as disease-modifying agent for PD.

The aim of this study was to evaluate the effects of chronic treatment with CBD (10 mg/kg, i.p.) on PD-associated neurodegenerative and neuroinflammatory processes, and motor deficits in the 6-hydroxydopamine model. Moreover, we investigated the potential mechanisms by which CBD exerted its effects in this model.

CBD-treated animals showed a reduction of nigrostriatal degeneration accompanied by a damping of the neuroinflammatory response and an improvement of motor performance. In particular, CBD exhibits a preferential action on astrocytes and activates the astrocytic transient receptor potential vanilloid 1 (TRPV1), thus, enhancing the endogenous neuroprotective response of ciliary neurotrophic factor (CNTF).

These results overall support the potential therapeutic utility of CBD in PD, as both neuroprotective and symptomatic agent.”

https://pubmed.ncbi.nlm.nih.gov/34445626/

https://www.mdpi.com/1422-0067/22/16/8920

Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment

ijms-logo“Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes.

The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson’s disease, Tourette’s syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors.

The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.”

https://pubmed.ncbi.nlm.nih.gov/33466734/

https://www.mdpi.com/1422-0067/22/2/778

Cannabis in Parkinson’s Disease: The Patients’ View

IOS Press | Impacting the World of ScienceLittle is known about the patients’ view on treatment with medical cannabis (MC) for Parkinson’s disease (PD).

Objective: To assess the PD community’s perception of MC and patients’ experience with MC.

Results: Overall, 1.348 questionnaires (1.123 nationwide, 225 local) were analysed. 51% of participants were aware of the legality of MC application, 28% of various routes of administration (ROA) and 9% of the difference between delta9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). PD-related cannabis use was reported by 8.4% of patients and associated with younger age, living in large cities and better knowledge about the legal and clinical aspects of MC. Reduction of pain and muscle cramps was reported by more than 40% of cannabis users. Stiffness/akinesia, freezing, tremor, depression, anxiety and restless legs syndrome subjectively improved for more than 20% and overall tolerability was good. Improvement of symptoms was reported by 54% of users applying oral CBD and 68% inhaling THC-containing cannabis. Compared to CBD intake, inhalation of THC was more frequently reported to reduce akinesia and stiffness (50.0% vs. 35.4%; p < 0.05). Interest in using MC was reported by 65% of non-users.

Conclusion: MC is considered as a therapeutic option by many PD patients. Nevertheless, efficacy and different ROA should further be investigated.”

https://pubmed.ncbi.nlm.nih.gov/33216043/

https://content.iospress.com/articles/journal-of-parkinsons-disease/jpd202260

THE PHARMACOLOGICAL CASE FOR CANNABIGEROL (CBG)

Journal of Pharmacology and Experimental Therapeutics: 375 (3) “Medical cannabis and individual cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD), are receiving growing attention in both the media and the scientific literature. The Cannabis plant, however, produces over 100 different cannabinoids, and cannabigerol (CBG) serves as the precursor molecule for the most abundant phytocannabinoids.

CBG exhibits affinity and activity characteristics between THC and CBD at the cannabinoid receptors, but appears to be unique in its interactions with alpha-2 adrenoceptors and 5-HT1A Studies indicate that CBG may have therapeutic potential in treating neurological disorders (e.g., Huntington’s Disease, Parkinson’s Disease, and multiple sclerosis), inflammatory bowel disease, as well as having antibacterial activity.

There is growing interest in the commercial use of this unregulated phytocannabinoid. This review focuses on the unique pharmacology of CBG, our current knowledge of its possible therapeutic utility, and its potential toxicological hazards.

Significance Statement Cannabigerol (CBG) is currently being marketed as a dietary supplement and, as with cannabidiol (CBD) before, many claims are being made about its benefits. Unlike CBD, however, little research has been performed on this unregulated molecule, and much of what is known warrants further investigation to identify potential areas of therapeutic uses and hazards.”

https://pubmed.ncbi.nlm.nih.gov/33168643/

https://jpet.aspetjournals.org/content/early/2020/11/09/jpet.120.000340

Emerging potential of cannabidiol in reversing proteinopathies

Ageing Research Reviews “The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis.

Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders.

Cannabidiol, a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of cannabidiol in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of cannabidiol in these disorders.

Because of its putative role in the proteostasis network in particular, cannabidiol could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of cannabidiol as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders.

We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for ageing proteinopathies.”

https://pubmed.ncbi.nlm.nih.gov/33181336/

“Cannabidiol reduces oxidative stress and neuroinflammation of brain.”

https://www.sciencedirect.com/science/article/pii/S1568163720303445?via%3Dihub

Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease

molecules-logo“Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown.

Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases.

CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation.

In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.”

https://pubmed.ncbi.nlm.nih.gov/33171772/

https://www.mdpi.com/1420-3049/25/21/5186

Distinctive Evidence Involved in the Role of Endocannabinoid Signalling in Parkinson’s Disease: A Perspective on Associated Therapeutic Interventions

ijms-logo“Current pharmacotherapy of Parkinson’s disease (PD) is symptomatic and palliative, with levodopa/carbidopa therapy remaining the prime treatment, and nevertheless, being unable to modulate the progression of the neurodegeneration. No available treatment for PD can enhance the patient’s life-quality by regressing this diseased state.

Various studies have encouraged the enrichment of treatment possibilities by discovering the association of the effects of the endocannabinoid system (ECS) in PD.

These reviews delineate the reported evidence from the literature on the neuromodulatory role of the endocannabinoid system and expression of cannabinoid receptors in symptomatology, cause, and treatment of PD progression, wherein cannabinoid (CB) signalling experiences alterations of biphasic pattern during PD progression.

Endocannabinoids regulate the basal ganglia neuronal circuit pathways, synaptic plasticity, and motor functions via communication with dopaminergic, glutamatergic, and GABAergic signalling systems bidirectionally in PD.

Further, gripping preclinical and clinical studies demonstrate the context regarding the cannabinoid compounds, which is supported by various evidence (neuroprotection, suppression of excitotoxicity, oxidative stress, glial activation, and additional benefits) provided by cannabinoid-like compounds (much research addresses the direct regulation of cannabinoids with dopamine transmission and other signalling pathways in PD).

More data related to endocannabinoids efficacy, safety, and pharmacokinetic profiles need to be explored, providing better insights into their potential to ameliorate or even regress PD.”

https://pubmed.ncbi.nlm.nih.gov/32872273/

https://www.mdpi.com/1422-0067/21/17/6235

Phytocannabinoids: General Aspects and Pharmacological Potential in Neurodegenerative Diseases

 “In the last few years research into Cannabis and its constituent phytocannabinoids has burgeoned, particularly in the potential application of novel cannabis phytochemicals for the treatment of diverse illnesses related to neurodegeneration and dementia, including Alzheimer’s (AD), Parkinson’s (PD) and Huntington’s disease (HD). To date, these neurological diseases have mostly relied on symptomatological management. However, with an aging population globally, the search for more efficient and disease-modifying treatments that could delay or mitigate disease progression is imperative. In this context, this review aims to present a state of art in the research with cannabinoids and novel cannabinoid-based drug candidates that have been emerged as novel promising alternatives for drug development and innovation in the therapeutics of a number of diseases, especially those related to CNS-disturbance and impairment.”

https://pubmed.ncbi.nlm.nih.gov/32691712/

https://www.eurekaselect.com/183955/article

Neuroprotection or Neurotoxicity of Illicit Drugs on Parkinson’s Disease

life-logo“Parkinson’s Disease (PD) is currently the most rapid growing neurodegenerative disease and over the past generation, its global burden has more than doubled. The onset of PD can arise due to environmental, sporadic or genetic factors. Nevertheless, most PD cases have an unknown etiology.

Chemicals, such as the anthropogenic pollutant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amphetamine-type stimulants, have been associated with the onset of PD. Conversely, cannabinoids have been associated with the treatment of the symptoms’. PD and medical cannabis is currently under the spotlight, and research to find its benefits on PD is on-going worldwide.”

https://pubmed.ncbi.nlm.nih.gov/32545328/

https://www.mdpi.com/2075-1729/10/6/86

Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced dyskinesia in Parkinson’s disease.

Neurobiology of Disease“The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson’s disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects.

In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before.

In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.”

https://www.ncbi.nlm.nih.gov/pubmed/32387338

“Δ9-THCV exhibited anti-dyskinetic properties in L-DOPA-treated Pitx3ak mutant mice. It delayed the onset of dyskinetic signs and reduced their neurochemical changes. It also reduced their intensity when given once dyskinesia was already present. This potential adds to other properties of Δ9-THCV as antiparkinsonian therapy.

In summary, our data support the anti-dyskinetic potential of Δ9-THCV to ameliorate adverse effects caused by L-DOPA, in particular delaying the occurrence and attenuating the magnitude of dyskinetic signs. This adds to its promising symptom-alleviating and neuroprotective properties described previously. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for PD patients.”

https://www.sciencedirect.com/science/article/pii/S0969996120301674?via%3Dihub