From Cannabis sativa to Cannabidiol: Promising Therapeutic Candidate for the Treatment of Neurodegenerative Diseases.

frontiers in pharmacology – Retraction Watch“Cannabis sativa, commonly known as marijuana, contains a pool of secondary plant metabolites with therapeutic effects.

Besides Δ9-tetrahydrocannabinol that is the principal psychoactive constituent of Cannabiscannabidiol (CBD) is the most abundant nonpsychoactive phytocannabinoid and may represent a prototype for anti-inflammatory drug development for human pathologies where both the inflammation and oxidative stress (OS) play an important role to their etiology and progression.

To this regard, Alzheimer’s disease (AD), Parkinson’s disease (PD), the most common neurodegenerative disorders, are characterized by extensive oxidative damage to different biological substrates that can cause cell death by different pathways. Most cases of neurodegenerative diseases have a complex etiology with a variety of factors contributing to the progression of the neurodegenerative processes; therefore, promising treatment strategies should simultaneously target multiple substrates in order to stop and/or slow down the neurodegeneration.

In this context, CBD, which interacts with the eCB system, but has also cannabinoid receptor-independent mechanism, might be a good candidate as a prototype for anti-oxidant drug development for the major neurodegenerative disorders, such as PD and AD. This review summarizes the multiple molecular pathways that underlie the positive effects of CBD, which may have a considerable impact on the progression of the major neurodegenerative disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/32210795

“The present review provided evidence that the nonpsychoactive phytocannabinoids CBD could be a potential pharmacological tool for the treatment of neurodegenerative disorders; its excellent safety and tolerability profile in clinical studies renders it a promising therapeutic agent.

The molecular mechanisms associated with CBD’s improvement in PD and AD are likely multifaceted, and although CBD may act on different molecular targets all the beneficial effects are in some extent linked to its antioxidant and anti-inflammatory profile, as observed in in vitro and in vivo studies. Therefore, this review describes evidence to prove the therapeutical efficacy of CBD in patients affected by neurodegenerative disorders and promotes further research in order to better elucidate the molecular pathways involved in the therapeutic potential of CBD.”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00124/full

Cannabidiol exerts protective effects in an in vitro model of Parkinson’s disease activating AKT/mTOR pathway.

Fitoterapia“Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the degeneration of the nigrostriatal dopaminergic pathway with loss of substantia nigra pars compacta neurons and dopamine depletion. Various natural compounds showed protective actions against PD.

In this work, the protective effects of cannabidiol (CBD), obtained from Cannabis sativa, were evaluated in retinoic acid differentiated SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+), an in vitro PD model.

CBD counteracted the loss of cell viability caused by MPP+, reducing apoptosis as demonstrated by the reduction of Bax and caspase 3. Moreover, CBD reduced the nuclear levels of PARP-1. The protective effects of CBD seem to be mediated by the activation of ERK and AKT/mTOR pathways.

These data suggested the involvement of ERK in the modulation of autophagy. However, beclin 1 levels were not modified neither by MPP+ nor by CBD. These results indicated that CBD may exert preventive and protective actions in PD.”

https://www.ncbi.nlm.nih.gov/pubmed/32184097

https://www.sciencedirect.com/science/article/abs/pii/S0367326X20301350?via%3Dihub

Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases.

Image result for histology and histopathology“Generally, the development and progression of neurodegenerative diseases are associated with advancing age, so they are usually diagnosed in late adulthood. A primary mechanism underlying the onset of neurodegenerative diseases is neuroinflammation. Based on this background, the concept of “neuroinflammaging” has emerged. In this deregulated neuroinflammatory process, a variety of immune cells participate, especially glial cells, proinflammatory cytokines, receptors, and subcellular organelles including mitochondria, which are mainly responsible for maintaining redox balance at the cellular level. Senescence and autophagic processes also play a crucial role in the neuroinflammatory disease associated with aging.

Of particular interest, melatonin, cannabinoids, and the receptors of both molecules which are closely related, exert beneficial effects on the neuroinflammatory processes that precede the onset of neurodegenerative pathologies such as Parkinson’s and Alzheimer’s diseases. Some of these neuroprotective effects are fundamentally related to its anti-inflammatory and antioxidative actions at the mitochondrial level due to the strategic functions of this organelle. The aim of this review is to summarize the most recent advances in the study of neuroinflammation and neurodegeneration associated with age and to consider the use of new mitochondrial therapeutic targets related to the endocannabinoid system and the pineal gland.”

https://www.ncbi.nlm.nih.gov/pubmed/32154907

https://www.hh.um.es/Abstracts/Vol_/_/__18212.htm

Application of Cannabinoids in Neurosciences: Considerations and Implications.

 Current Issue Cover Image“Medicinal cannabinoid use continues to evolve across the United States, although legitimate federal recognition for medicinal purpose is lacking. Variability exists across states within the United States with respect to legislation, and health care institutions encounter challenges when patients present with a history of medicinal cannabinoid use. Emerging evidence in the field of neurosciences suggests a role of cannabinoids for neurologic medical conditions such as Parkinson disease, multiple sclerosis, and epilepsy. We aim to provide an overview of cannabinoids including a historical perspective, pharmacology, applications in neurosciences, and challenges in health care and academia. Knowledge of the appropriate role of cannabinoids in the clinical setting is essential for all health care practitioners including nursing.”

https://www.ncbi.nlm.nih.gov/pubmed/32084064

https://journals.lww.com/ccnq/Abstract/2020/04000/Application_of_Cannabinoids_in_Neurosciences_.9.aspx

Activation of CB2R with AM1241 ameliorates neurodegeneration via the Xist/miR-133b-3p/Pitx3 axis.

Publication cover image“Activation of cannabinoid receptor type II (CB2R) by AM1241 has been demonstrated to protect dopaminergic neurons in Parkinson’s disease (PD) animals.

However, the specific mechanisms of the action of the CB2R agonist AM1241 for PD treatment have not been characterized.

The CB2 receptor agonist AM1241 alleviated PD via regulation of the Xist/miR-133b-3p/Pitx3 axis, and revealed a new approach for PD treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31989652

https://onlinelibrary.wiley.com/doi/abs/10.1002/jcp.29530

Microglial Phenotypes and Their Relationship to the Cannabinoid System: Therapeutic Implications for Parkinson’s Disease.

 Image result for molecules journal“Parkinson’s disease is a neurodegenerative disorder, the motor symptoms of which are associated classically with Lewy body formation and nigrostriatal degeneration.

Neuroinflammation has been implicated in the progression of this disease, by which microglia become chronically activated in response to α-synuclein pathology and dying neurons, thereby acquiring dishomeostatic phenotypes that are cytotoxic and can cause further neuronal death.

Microglia have a functional endocannabinoid signaling system, expressing the cannabinoid receptors in addition to being capable of synthesizing and degrading endocannabinoids. Alterations in the cannabinoid system-particularly an upregulation in the immunomodulatory CB2 receptor-have been demonstrated to be related to the microglial activation state and hence the microglial phenotype.

This paper will review studies that examine the relationship between the cannabinoid system and microglial activation, and how this association could be manipulated for therapeutic benefit in Parkinson’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31973235

“Microglia activation states and cannabinoid system: Therapeutic implications.  There is accumulating evidence indicating that cannabinoids (CBs) might serve as a promising tool to modify the outcome of inflammation, especially by influencing microglial activity. Microglia has a functional endocannabinoid (eCB) signaling system, composed of cannabinoid receptors and the complete machinery for the synthesis and degradation of eCBs. These actions make CBs a promising therapeutic tool to avoid the detrimental effects of inflammation and possibly paving the way to target microglia in order to generate a reparative milieu in neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pubmed/27373505

“These findings imply that a hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of these diseases. Scientific evidence shows that cannabis can provide symptomatic relief in several neurodegenerative diseases.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070159/

“Cannabinoids can have neuroprotective effects, and this can be exploited for therapeutic strategies against neurodegenerative diseases”   http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243800/

Effects of acute cannabidiol administration on anxiety and tremors induced by a Simulated Public Speaking Test in patients with Parkinson’s disease.

Image result for journal of psychopharmacology“Cannabidiol (CBD) is one of the main components of Cannabis sativa and has anxiolytic properties, but no study has been conducted to evaluate the effects of CBD on anxiety signs and symptoms in patients with Parkinson’s disease (PD).

This study aimed to evaluate the impacts of acute CBD administration at a dose of 300 mg on anxiety measures and tremors induced by a Simulated Public Speaking Test (SPST) in individuals with PD.

METHODS:

A randomised, double-blinded, placebo-controlled, crossover clinical trial was conducted. A total of 24 individuals with PD were included and underwent two experimental sessions within a 15-day interval. After taking CBD or a placebo, participants underwent the SPST. During the test, the following data were collected: heart rate, systemic blood pressure and tremor frequency and amplitude. In addition, the Visual Analog Mood Scales (VAMS) and Self-Statements during Public Speaking Scale were applied. Statistical analysis was performed by repeated-measures analysis of variance (ANOVA) while considering the drug, SPST phase and interactions between these variables.

RESULTS:

There were statistically significant differences in the VAMS anxiety factor for the drug; CBD attenuated the anxiety experimentally induced by the SPST. Repeated-measures ANOVA showed significant differences in the drug for the variable related to tremor amplitude as recorded by the accelerometer.

CONCLUSION:

Acute CBD administration at a dose of 300 mg decreased anxiety in patients with PD, and there was also decreased tremor amplitude in an anxiogenic situation.”

https://www.ncbi.nlm.nih.gov/pubmed/31909680

https://journals.sagepub.com/doi/abs/10.1177/0269881119895536?journalCode=jopa

Cannabinoids and the expanded endocannabinoid system in neurological disorders.

 Related image“Anecdotal evidence that cannabis preparations have medical benefits together with the discovery of the psychotropic plant cannabinoid Δ9-tetrahydrocannabinol (THC) initiated efforts to develop cannabinoid-based therapeutics.

These efforts have been marked by disappointment, especially in relation to the unwanted central effects that result from activation of cannabinoid receptor 1 (CB1), which have limited the therapeutic use of drugs that activate or inactivate this receptor.

The discovery of CB2 and of endogenous cannabinoid receptor ligands (endocannabinoids) raised new possibilities for safe targeting of this endocannabinoid system. However, clinical success has been limited, complicated by the discovery of an expanded endocannabinoid system – known as the endocannabinoidome – that includes several mediators that are biochemically related to the endocannabinoids, and their receptors and metabolic enzymes.

The approvals of nabiximols, a mixture of THC and the non-psychotropic cannabinoid cannabidiol, for the treatment of spasticity and neuropathic pain in multiple sclerosis, and of purified botanical cannabidiol for the treatment of otherwise untreatable forms of paediatric epilepsy, have brought the therapeutic use of cannabinoids and endocannabinoids in neurological diseases into the limelight.

In this Review, we provide an overview of the endocannabinoid system and the endocannabinoidome before discussing their involvement in and clinical relevance to a variety of neurological disorders, including Parkinson disease, Alzheimer disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, stroke, epilepsy and glioblastoma.”

https://www.ncbi.nlm.nih.gov/pubmed/31831863

“The existence of the endocannabinoidome explains in part why some non-euphoric cannabinoids, which affect several endocannabinoidome proteins, are useful for the treatment of neurological disorders, such as multiple sclerosis and epilepsy.”

https://www.nature.com/articles/s41582-019-0284-z

Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson’s disease.

Neuropharmacology

“Medications that improve pain threshold can be useful in the pharmacotherapy of Parkinson’s disease (PD). Pain is a prevalent PD’s non-motor symptom with a higher prevalence of analgesic drugs prescription for patients. However, specific therapy for PD-related pain are not available.

Since the endocannabinoid system is expressed extensively in different levels of pain pathway, drugs designed to target this system have promising therapeutic potential in the modulation of pain. Thus, we examined the effects of the 6-hydroxydopamine- induced PD on nociceptive responses of mice and the influence of cannabidiol (CBD) on 6-hydroxydopamine-induced nociception.

Further, we investigated the pathway involved in the analgesic effect of the CBD through the co-administration with a fatty acid amide hydrolase (FAAH) inhibitor, increasing the endogenous anandamide levels, and possible targets from anandamide, i.e., the cannabinoid receptors subtype 1 and 2 (CB1 and CB2) and the transient receptor potential vanilloid type 1 (TRPV1).

We report that 6-hydroxydopamine- induced parkinsonism decreases the thermal and mechanical nociceptive threshold, whereas CBD (acute and chronic treatment) reduces this hyperalgesia and allodynia evoked by 6-hydroxydopamine. Moreover, ineffective doses of either FAAH inhibitor or TRPV1 receptor antagonist potentialized the CBD-evoked antinociception while an inverse agonist of the CB1 and CB2 receptor prevented the antinociceptive effect of the CBD.

Altogether, these results indicate that CBD can be a useful drug to prevent the parkinsonism-induced nociceptive threshold reduction. They also suggest that CB1 and TRPV1 receptors are important for CBD-induced analgesia and that CBD could produce these analgesic effects increasing endogenous anandamide levels.”

https://www.ncbi.nlm.nih.gov/pubmed/31706993

“The CBD treatment decreases hyperalgesia and allodynia in experimental parkinsonism.”

https://www.sciencedirect.com/science/article/pii/S0028390819303703?via%3Dihub

Image 1

Potential new therapies against a toxic relationship: neuroinflammation and Parkinson’s disease.

 Image result for ovid journal“Parkinson’s disease (PD) is a neurodegenerative disorder classically associated with motor symptoms, but several nonmotor disturbances appear decades before the clinical diagnosis of the disease.

A variety of hypotheses exist to explain the onset of PD, and neuroinflammation is one of the most investigated processes. In fact, strong evidence suggests that PD begins with an inflammatory process; currently, however, no anti-inflammatory therapy is clinically employed to alleviate the typical motor and the prodromal disturbances such as olfactory loss, cognitive impairments, depression and anxiety, sleep disturbances, and autonomic disorders.

In fact, the classical dopaminergic therapies are not effective in alleviating these symptoms and there is no other specific therapy for these outcomes. Therefore, in this review, we will discuss novel potential pharmacological therapeutic strategies focusing on cannabinoids, caffeine, melatonin, and dietary compounds, which could act as adjuvants to regular PD therapy.

These described chemicals have been extensively investigated as anti-inflammatory agents possibly promoting beneficial effects on nonmotor symptoms of PD. The investigation of the inflammatory process at different stages of PD progression should give us a better view of the therapeutic scenario and could improve our understanding of the mechanisms of this disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31703030

https://insights.ovid.com/crossref?an=00008877-201912000-00008