Cannabidiol as an Alternative Analgesic for Acute Dental Pain

pubmed logo

“Odontogenic pain can be debilitating, and nonopioid analgesic options are limited. This randomized placebo-controlled clinical trial aimed to assess the effectiveness and safety of cannabidiol (CBD) as an analgesic for patients with emergency acute dental pain. Sixty-one patients with moderate to severe toothache were randomized into 3 groups: CBD10 (CBD 10 mg/kg), CBD20 (CBD 20 mg/kg), and placebo. We administered a single dose of respective oral solution and monitored the subjects for 3 h. The primary outcome measure was the numerical pain differences using a visual analog scale (VAS) from baseline within and among the groups. Secondary outcome measures included ordinal pain intensity differences, the onset of significant pain relief, maximum pain relief, changes in bite force within and among the groups, psychoactive effects, mood changes, and other adverse events. Both CBD groups resulted in significant VAS pain reduction compared to their baseline and the placebo group, with a maximum median VAS pain reduction of 73% from baseline pain at the 180-min time point (P < 0.05). CBD20 experienced a faster onset of significant pain relief than CBD10 (15 versus 30 min after drug administration), and both groups reached maximum pain relief at 180-min. Number needed to treat was 3.1 for CBD10 and 2.4 for CBD20. Intragroup comparisons showed a significant increase in bite forces in both CBD groups (P < 0.05) but not in the placebo group (P > 0.05). CBD20 resulted in a significant difference in mean percent bite force change in the 90- and 180-min time points compared to the placebo group (P < 0.05). Compared to placebo, sedation, diarrhea, and abdominal pain were significantly associated with the CBD groups (P < 0.05). There were no other significant psychoactive or mood change effects. This randomized trial provides the first clinical evidence that oral CBD can be an effective and safe analgesic for dental pain.”

https://pubmed.ncbi.nlm.nih.gov/37910667/

“This study showed for the first time that pure CBD could provide more than 70% analgesia to patients with emergency dental pain and increase their bite force during the analgesic effect while maintaining a safe drug profile with minimal side effects. This novel study can catalyze the use of CBD as an alternative analgesic to opioids for acute inflammatory pain conditions, which could ultimately help to address the opioid epidemic.”

https://journals.sagepub.com/doi/10.1177/00220345231200814

Cannabidiol Rescues TNF-α-Inhibited Proliferation, Migration, and Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells

biomolecules-logo

“Strategies to promote dental pulp stem cells (DPSCs) functions including proliferation, migration, pro-angiogenic effects, and odontogenic/osteogenic differentiation are in urgent need to restore pulpitis-damaged dentin/pulp regeneration and DPSCs-based bone tissue engineering applications. Cannabidiol (CBD), an active component of Cannabis sativa has shown anti-inflammation, chemotactic, anti-microbial, and tissue regenerative potentials. Based on these facts, this study aimed to analyze the effect of CBD on DPSCs proliferation, migration, and osteogenic/odontogenic differentiation in basal and inflammatory conditions. Highly pure DPSCs with characteristics of mesenchymal stem cells (MSCs) were successfully isolated, as indicated by the results of flowcytometry and multi-lineage (osteogenic, adipogenic, and chondrogenic) differentiation potentials. Among the concentration tested (0.1-12.5 µM), CBD (2.5 μM) showed the highest anabolic effect on the proliferation and osteogenic/odontogenic differentiation of DPSCs. Pro-angiogenic growth factor VEGF mRNA expression was robustly higher in CBD-treated DPSCs. CBD also prompted the migration of DPSCs and CBD receptor CB1 and CB2 expression in DPSCs. TNF-α inhibited the viability, migration, and osteogenic/odontogenic differentiation of DPSCs and CBD reversed these effects. CBD alleviated the TNF-α-upregulated expression of pro-inflammatory cytokines TNF-α, interleukin (IL)-1β, and IL-6 in DPSCs. In conclusion, our results indicate the possible application of CBD on DPSCs-based dentin/pulp and bone regeneration.”

https://pubmed.ncbi.nlm.nih.gov/36671503/

“We tested the effect of CBD on DPSCs functions required for dentin and pulp revitalization and bone regeneration, including viability, migration, osteogenic/odontogenic differentiation, pro-angiogenic potential, and anti-inflammatory effects in vitro experiments. Our results showed the anabolic effect of CBD in these functions of DPSCs both in the basal and inflammatory situations suggesting the possible application of CBD or/and DPSCs on oral tissue regeneration including dentin/pulp and bone. Our results warrant in situ studies using dentin/pulp and bone regeneration models to further confirms these anabolic roles of CBD.”

https://www.mdpi.com/2218-273X/13/1/118

Evaluation of cannabinoid receptors type 1-2 in periodontitis patients

“Background: As effective immune modulators, Endocannabinoids may suppress the inflammatory responses in periodontitis. This study assessed the expression of cannabinoid receptors in gingiva and the impact on periodontitis.

Methods: A cross-sectional study on 20 patients with more than stage II and Grade A periodontitis and a control group consisting of 19 healthy individuals was performed. The gingival biopsies were assessed for the expression of CB1 and CB2 using the quantitative reverse transcription polymerase chain reaction, TaqMan method.

Results: The study sample consisted of 39 subjects, 31 females (79.5%) and 8 males (20.5%), including 20 periodontitis subjects (80% female and 20% male), and control groups (78.9% female and 21.1% male). The mean ages of cases and controls were 33.3 ± 4.7 and 35.7 ± 5.1 years, respectively. The gene expression of CB2 in periodontitis was 27.62 ± 7.96 and in healthy subjects was 78.15 ± 23.07. The CB2 was significantly lower than the control group (p = .008). In comparison, the gene expression index of CB1 in the periodontal group (9.42 ± 3.03) was higher than the control group (6.62 ± 1.13) but did not meet a significant value (p = .671).

Conclusion: The lower expression of CB2 receptors in the periodontitis group may be due to the reduced protective effect of anti-inflammatory agents. These elements include cannabinoids and the imbalance leading to the predominance of pro-inflammatory effects. Therefore, the local effects of cannabinoids as an immunomodulator could be useful for oral inflammatory diseases such as periodontitis.”

https://pubmed.ncbi.nlm.nih.gov/35719011/

“In conclusion, as CB2 receptors are expressed in gingival tissues, particularly immune cells and fibroblasts, they involve in tissue and wound repair. The lower expression of these receptors in periodontitis, could be related to the inflammatory reactions and interrupts wound repair. Therefore, it seems that the use of cannabinoid CB2 agonists in the form of mouth wash contributes to the healing of periodontitis.”

https://onlinelibrary.wiley.com/doi/10.1002/cre2.608

Anti-inflammation and gingival wound healing activities of Cannabis sativa L. subsp. sativa (hemp) extract and cannabidiol: An in vitro study

Archives of Oral Biology

“Objective: To evaluate the anti-inflammatory and gingival wound healing activities of Cannabis sativa L. subsp. sativa (hemp) extract and cannabidiol (CBD).

Design: The cellular bioactivities of hemp extract and CBD were determined the inhibition of TNF-α and IL-1β in LPS-induced murine macrophage (RAW 264.7) cells by using ELISA while wound healing activity in human gingival fibroblast (HGF-1) cells was performed by a scratch test assay. The cytotoxicity was also concerned and evaluated by MTT assay.

Results: The hemp extract and CBD significantly decreased TNF-α release by up to 91.05 ± 2.91% and 50.78 ± 7.21% of LPS activity, respectively, in a dose-dependent manner, compared to 10 µg/mL hydrocortisone (61.67 ± 3.79%). The hemp extract and CBD also significantly decreased IL-1β release, also in dose-dependent response, up to 78.03 ± 3.34% and 85.87 ± 1.11% of LPS activity, respectively, compared to 5 µg/mL hydrocortisone (80.81 ± 3.55%). The mean percentage of closure of the wound area was 27.92 ± 1.21% when exposed to 5 µg/mL hemp extract and 33.49 ± 1.67% when exposed to 0.5 µg/mL CBD, compared to 24.34 ± 2.29% for non-treated control.

Conclusions: Our study demonstrates that both hemp extract and CBD can inhibit TNF-α and IL-1β production in LPS-induced RAW 264.7 cells and promote wound healing in HGF-1 cells. This is the first to show that short-term exposure to hemp extract and CBD promoted gingival fibroblast wound healing, demonstrating that hemp extract and CBD have potential benefits in the treatment of oral inflammation and ulcers.”

https://pubmed.ncbi.nlm.nih.gov/35623115/

https://www.sciencedirect.com/science/article/abs/pii/S0003996922001212?via%3Dihub

ga1

CBD Promotes Oral Ulcer Healing via Inhibiting CMPK2-Mediated Inflammasome

Journal of Dental Research - The European Society of Endodontology“Oral ulcer is a common oral inflammatory lesion accompanied by severe pain but with few effective treatments. Cannabidiol (CBD) is recently emerging for its therapeutic potential in a range of diseases, including inflammatory conditions and cancers.

Here we show that CBD oral spray on acid- or trauma-induced oral ulcers on mice tongue inhibits inflammation, relieves pain, and accelerates lesion closure. Notably, the enrichment of genes associated with the NOD, LRR, and NLRP3 pyrin domain-containing protein 3 (NLRP3) inflammasome pathway is downregulated after CBD treatment. The expression of cleaved-gasdermin D (GSDMD) and the percentage of pyroptotic cells are reduced as well.

In addition, CBD decreases the expression of cytidine/uridine monophosphate kinase 2 (CMPK2), which subsequently inhibits the generation of oxidized mitochondria DNA and suppresses inflammasome activation. These immunomodulating effects of CBD are mostly blocked by peroxisome proliferator activated receptor γ (PPARγ) antagonist and partially antagonized by CB1 receptor antagonist.

Our results demonstrate that CBD accelerates oral ulcer healing by inhibiting CMPK2-mediated NLRP3 inflammasome activation and pyroptosis, which are mediated mostly by PPARγ in the nucleus and partially by CB1 in the plasma membrane.”

https://pubmed.ncbi.nlm.nih.gov/34269108/

https://journals.sagepub.com/doi/10.1177/00220345211024528

Anti-Bacterial Properties of Cannabigerol Toward Streptococcus mutans

Frontiers in Microbiology: Multidrug Resistance in Pasteurellaceae“Streptococcus mutans (S. mutans) is a gram-positive facultatively anaerobic bacterium and the most common pathogen associated with tooth caries. The organism is acid tolerant and can undergo physiological adaptation to function effectively in acid environments such as carious dental plaque.

Some cannabinoids have been found to have potent anti-microbial activity against gram-positive bacteria. One of these is the non-psychoactive, minor phytocannabinoid Cannabigerol (CBG). Here we show that CBG exhibits anti-bacterial activities against S. mutans.

In summary, we present here data showing the mechanisms by which CBG exerts its anti-bacterial effect against S. mutans.”

https://pubmed.ncbi.nlm.nih.gov/33967995/

“Cannabigerol (CBG) is a non-psychotropic Cannabis-derived cannabinoid (CB). In summary, the present study demonstrates an anti-bacterial effects of the Cannabis component CBG toward the cariogenic bacteria S. mutans. The interference of CBG with the caries causative S. mutans may provide a novel innovative way to combat dental caries.” https://www.frontiersin.org/articles/10.3389/fmicb.2021.656471/full

“Recent advances in the understanding of the aetiology and therapeutic strategies in burning mouth syndrome: focus on the actions of cannabinoids”.

European Journal of Neuroscience“Burning mouth syndrome (BMS) is a neuropathic pain disorder associated with a burning sensation on oral mucosal surfaces with frequently reported xerostomia, dysgeusia and tingling or paraesthetic sensations. However, patients present no clinically evident causative lesions. The poor classification of the disorder has resulted in a diagnostic challenge, particularly for the clinician/dentist evaluating these individuals. Major research developments have been made in the BMS field in recent years to address this concern, principally in terms of the pathophysiological mechanisms underlying the disorder, in addition to therapeutic advancements. For the purpose of this review, an update on the pathophysiological mechanisms will be discussed from a neuropathic, immunological, hormonal and psychological perspective. This review will also focus on the many therapeutic strategies that have been explored for BMS, including antidepressants/antipsychotics, nonsteroidal anti-inflammatories, hormone replacement therapies, phytotherapeutic compounds and non-pharmacological interventions, overall highlighting the lack of controlled clinical studies to support the effectiveness of such therapeutic avenues. Particular focus is given to the cannabinoid system, and the potential of cannabis-based therapeutics in managing BMS patients.”

https://www.ncbi.nlm.nih.gov/pubmed/32091630

https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.14712

Comparison of Efficacy of Cannabinoids versus Commercial Oral Care Products in Reducing Bacterial Content from Dental Plaque: A Preliminary Observation.

Image result for cureus journal“Dental plaque is a complex biofilm that gets formed on the teeth and acts as a reservoir of different microbes. It is the root cause for the occurrence of several dental problems and diseases, including cavities, bad breath, bleeding gums, tooth decay, and tooth loss. Therefore, it should be regularly removed using suitable oral care aids.

The present study compared the efficacy of oral care products and cannabinoids in reducing the bacterial content of dental plaques.

Sixty adults aged 18 to 45 years were categorized into six groups based on the Dutch periodontal screening index. Dental plaques of the adults were collected using paro-toothpick sticks and spread on two Petri dishes, each with four divisions. On Petri dish-A, cannabidiol (CBD), cannabichromene (CBC), cannabinol (CBN), and cannabigerol (CBG) were used, and on Petri dish-B, cannabigerolic acid (CBGA), Oral B, Colgate, and Cannabite F (a toothpaste formulation of pomegranate and algae) were used. The Petri dishes were sealed and incubated, followed by counting the number of colonies.

Results: By evaluating the colony count of the dental bacteria isolated from six groups, it was found that cannabinoids were more effective in reducing the bacterial colony count in dental plaques as compared to the well-established synthetic oral care products such as Oral B and Colgate.

Conclusion: Cannabinoids have the potential to be used as an effective antibacterial agent against dental plaque-associated bacteria. Moreover, it provides a safer alternative for synthetic antibiotics to reduce the development of drug resistance.”

https://www.ncbi.nlm.nih.gov/pubmed/32038896

“To the best of our knowledge, no such study has been published that compares the efficiency of cannabinoids with that of oral care products against dental bacteria. Our study is the first of its kind conducted to compare the efficacy of well-established commercial oral care products and cannabinoids in reducing the bacterial content of the dental plaque. Reducing the bacterial content could significantly decrease and prevent gum diseases that have become a huge global burden owing to their direct relation with systemic diseases. Here we report a preliminary observatory study on effect of cannabinoids on reducing the bacterial content of dental plaque.”

https://www.cureus.com/articles/25300-comparison-of-efficacy-of-cannabinoids-versus-commercial-oral-care-products-in-reducing-bacterial-content-from-dental-plaque-a-preliminary-observation

CB1 enhanced the osteo/dentinogenic differentiation ability of periodontal ligament stem cells via p38 MAPK and JNK in an inflammatory environment.

Publication cover image

“Periodontitis is an inflammatory immune disease that causes periodontal tissue loss. Inflammatory immunity and bone metabolism are closely related to periodontitis.

The cannabinoid receptor I (CB1) is an important constituent of the endocannabinoid system and participates in bone metabolism and inflammation tissue healing.

It is unclear whether CB1 affects the mesenchymal stem cell (MSC) function involved in periodontal tissue regeneration.

In this study, we revealed the role and mechanism of CB1 in the osteo/dentinogenic differentiation of periodontal ligament stem cells (PDLSCs) in an inflammatory environment.

CONCLUSIONS:

CB1 was able to enhance the osteo/dentinogenic differentiation ability of PDLSCs via p38 MAPK and JNK signalling in an inflammatory environment, which might be a potential target for periodontitis treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/31599069

“In conclusion, our findings revealed that CB1 could activate the osteo/dentinogenic differentiation potential of PDLSCs under inflammatory conditions. Our results clarified the potential role and mechanism of CB1 in PDLSCs under inflammatory conditions and provide candidate targets for enhancing MSC function and the treatment of periodontitis.”

https://onlinelibrary.wiley.com/doi/full/10.1111/cpr.12691

Activation of Cannabinoid Receptors Promote Periodontal Cell Adhesion and Migration.

Journal of Clinical Periodontology banner“Medical and recreational cannabis use is increasing significantly, but its impacts on oral health remains unclear.

The aim of this study is to investigate the effects of tetrahydrocannabinol (THC), the major active component in cannabis, on periodontal fibroblast cell adhesion and migration to explore its role in periodontal regeneration and wound healing.

RESULTS:

Both CB1 and CB2 were expressed in periodontal tissues but with different expression patterns. THC promoted periodontal cell wound healing by inducing HPLF cell adhesion and migration. This was mediated by focal adhesion kinase (FAK) activation and its modulation of MAPK activities. The effect of cannabinoids on periodontal fibroblast cell adhesion and migration were mainly dependent on the CB2.

CONCLUSION:

These results suggested that cannabinoids may contribute to developing new therapeutics for periodontal regeneration and wound healing.”

https://www.ncbi.nlm.nih.gov/pubmed/31461164

https://onlinelibrary.wiley.com/doi/abs/10.1111/jcpe.13190