The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors.

“Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects.

CONCLUSIONS:

These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.”

http://www.ncbi.nlm.nih.gov/pubmed/20945065

5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats.

“Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa which induces anxiolytic- and antipsychotic-like effects in rodents. These effects could be mediated by facilitation of the endocannabinoid system or by the activation of 5-HT(1A) receptors. As either of these mechanisms could promote adaptation to inescapable stress, the aim of the present work was to test the hypothesis that CBD would attenuate the autonomic and behavioural consequences of restraint stress (RS). We also investigated if the responses to CBD depended on activation of 5-HT(1A) receptors.

Cannabidiol (CBD)… cannabinoid generally found in relatively high concentrations in cannabis, exhibits a somewhat different pharmacology compared with THC. CBD attenuates the psychotomimetic and anxiogenic effects of THC in humans.

 Moreover, systemic administration of CBD induced antipsychotic and anxiolytic-like effects…

CONCLUSION AND IMPLICATIONS:

The results suggest that CBD can attenuate acute autonomic responses to stress and its delayed emotional consequences by facilitating 5-HT(1A) receptor-mediated neurotransmission.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697769/

 

Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats.

“Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa plant that induces anxiolytic effects… In addition, since CBD has been shown to inhibit anandamide metabolism, CB1 receptors could also be involved in the effects of this cannabinoid…

CBD injected into the dorsolateral periaqueductal gray (dlPAG) produced anxiolytic-like effects… The anxiolytic effect of CBD was confirmed in the  Vogel conflict test (VCT)…

CONCLUSION:

These results suggest the CBD interacts with 5HT1A receptors to produce anxiolytic effects in the dlPAG.”

http://www.ncbi.nlm.nih.gov/pubmed/18446323

Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors.

“Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD…

 Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure…

 In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission.

Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder.”

http://www.ncbi.nlm.nih.gov/pubmed/22979992

Predator threat stress promotes long lasting anxiety-like behaviors and modulates synaptophysin and CB1 receptors expression in brain areas associated with PTSD symptoms.

“Several studies have suggested that changes in hippocampal, prefrontal cortex and amygdaloid complex function are associated with the main symptoms of Posttraumatic Stress Disorder (PTSD). Predator exposure can mimic some aspects of PSTD such as hyperarousal and chronic anxiety…

 The present work evaluated whether the long lasting behavioral effects evoked by predator exposure are associated to long-term changes in the expression of the Cannabinoid receptor 1 (CB1) and the synaptic protein SYP in brain areas…

 Our results suggested that predator exposure causes long-lasting anxiogenic effects associated with hyperactivation of amygdaloid complex and modulation of CB1 receptor in brain areas related to PTSD symptoms.”

http://www.ncbi.nlm.nih.gov/pubmed/23178193

Mitigation of post-traumatic stress symptoms by Cannabis resin: a review of the clinical and neurobiological evidence.

“It is known from clinical studies that some patients attempt to cope with the symptoms of post-traumatic stress disorder (PTSD) by using recreational drugs. This review presents a case report of a 19-year-old male patient with a spectrum of severe PTSD symptoms, such as intense flashbacks, panic attacks, and self-mutilation, who discovered that some of his major symptoms were dramatically reduced by smoking cannabis resin. The major part of this review is concerned with the clinical and preclinical neurobiological evidence in order to offer a potential explanation of these effects on symptom reduction in PTSD.

This review shows that recent studies provided supporting evidence that PTSD patients may be able to cope with their symptoms by using cannabis products. Cannabis may dampen the strength or emotional impact of traumatic memories through synergistic mechanisms that might make it easier for people with PTSD to rest or sleep and to feel less anxious and less involved with flashback memories.

The presence of endocannabinoid signalling systems within stress-sensitive nuclei of the hypothalamus, as well as upstream limbic structures (amygdala), point to the significance of this system for the regulation of neuroendocrine and behavioural responses to stress.

 Evidence is increasingly accumulating that cannabinoids might play a role in fear extinction and antidepressive effects. It is concluded that further studies are warranted in order to evaluate the therapeutic potential of cannabinoids in PTSD.”

http://www.ncbi.nlm.nih.gov/pubmed/22736575

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long

The therapeutic potential of novel cannabinoid receptors.

Cover image

“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.”  http://www.ncbi.nlm.nih.gov/pubmed/19248809

“The therapeutic potential of novel cannabinoid receptors”  http://www.sciencedirect.com/science/article/pii/S0163725809000266