Learning and Memory is Modulated by Cannabidiol When Administered During Trace Fear-Conditioning.

 Cover image

“Cannabidiol (CBD) is thought to have therapeutic potential for treating psychiatric conditions that affect cognitive aspects of learning and memory, including anxiety and post-traumatic stress disorder (PTSD).

Studies have shown that CBD enhances extinction of fear memory when given after conditioning. This led us to hypothesize that CBD, if administered prior to fear conditioning, might modulate cognitive learning and memory processes in additional ways that would further guide its potential use for treating PTSD.

Therefore, we designed a study to investigate effects of CBD on fear learning and memory when administered to mice prior to administering a trace fear conditioning protocol which imposes cognitive demands on the learning and memory process.

Overall, the memory-modulating effects of a single pre-conditioning dose of CBD, which we show here, demonstrate the need to more fully characterize its basic effects on memory, suggest caution when using it clinically as an anxiolytic, and point to a need for more research into its potential as a therapeutic for treating memory-loss disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29432803

https://www.sciencedirect.com/science/article/pii/S1074742718300224

Cannabinoid Modulation of the Stressed Hippocampus.

 Image result for frontiers in molecular neuroscience

“Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia.

The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function.

Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus.

Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes.

Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels.

Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29311804

https://www.frontiersin.org/articles/10.3389/fnmol.2017.00411/full

Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats.

Image result for neuropsychopharmacology

“Exposure to a traumatic event may result in the development of Post-Traumatic Stress Disorder (PTSD).

Endocannabinoids are crucial modulators of the stress response, interfere with excessive retrieval and facilitate the extinction of traumatic memories. Exposure therapy, combined with pharmacotherapy, represents a promising tool for PTSD treatment.

We investigated whether pharmacological manipulations of the endocannabinoid system during extinction learning ameliorates the behavioral changes induced by trauma exposure.

Our findings suggest that drugs potentiating endocannabinoid neurotransmission may represent promising tools when combined to exposure-based psychotherapies in the treatment of PTSD.”

https://www.ncbi.nlm.nih.gov/pubmed/29265107

https://www.nature.com/articles/npp2017305

A Systematic Review of the Effectiveness of Medical Cannabis for Psychiatric, Movement and Neurodegenerative Disorders.

“The discovery of endocannabinoid’s role within the central nervous system and its potential therapeutic benefits have brought forth rising interest in the use of cannabis for medical purposes. The present review aimed to synthesize and evaluate the available evidences on the efficacy of cannabis and its derivatives for psychiatric, neurodegenerative and movement disorders. A systematic search of randomized controlled trials of cannabis and its derivatives were conducted via databases (PubMed, Embase and the Cochrane Central Register of Controlled Trials). A total of 24 reports that evaluated the use of medical cannabis for Alzheimer’s disease, anorexia nervosa, anxiety, dementia, dystonia, Huntington’s disease, Parkinson’s disease, post-traumatic stress disorder (PTSD), psychosis and Tourette syndrome were included in this review. Trial quality was assessed with the Cochrane risk of bias tool. There is a lack of evidence on the therapeutic effects of cannabinoids for amyotrophic lateral sclerosis and dystonia. Although trials with positive findings were identified for anorexia nervosa, anxiety, PTSD, psychotic symptoms, agitation in Alzheimer’s disease and dementia, Huntington’s disease, and Tourette syndrome, and dyskinesia in Parkinson’s disease, definitive conclusion on its efficacy could not be drawn. Evaluation of these low-quality trials, as rated on the Cochrane risk of bias tools, was challenged by methodological issues such as inadequate description of allocation concealment, blinding and underpowered sample size. More adequately powered controlled trials that examine the long and short term efficacy, safety and tolerability of cannabis for medical use, and the mechanisms underpinning the therapeutic potential are warranted.”

https://www.ncbi.nlm.nih.gov/pubmed/29073741

http://www.cpn.or.kr/journal/view.html?doi=10.9758/cpn.2017.15.4.301

Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress.

Psychoneuroendocrinology

“Activation of the hypothalamic-pituitary-adrenal axis (HPA) is critical for survival when the organism is exposed to a stressful stimulus. The endocannabinoid system (ECS) is currently considered an important neuromodulator involved in numerous pathophysiological processes and whose primary function is to maintain homeostasis. In the tissues constituting the HPA axis, all the components of the ECS are present and the activation of this system acts in parallel with changes in the activity of numerous neurotransmitters, including nitric oxide (NO). NO is widely distributed in the brain and adrenal glands and recent studies have shown that free radicals, and in particular NO, may play a crucial role in the regulation of stress response. Our objective was to determine the participation of the endocannabinoid and NOergic systems as probable mediators of the neuroendocrine HPA axis response to a psychophysical acute stress model in the adult male rat. Animals were pre-treated with cannabinoid receptors agonists and antagonists at central and systemic level prior to acute restraint exposure. We also performed in vitro studies incubating adrenal glands in the presence of ACTH and pharmacological compounds that modifies ECS components. Our results showed that the increase in corticosterone observed after acute restraint stress is blocked by anandamide administered at both central and peripheral level. At hypothalamic level both cannabinoid receptors (CB1 and CB2) are involved, while in the adrenal gland, anandamide has a very potent effect in suppressing ACTH-induced corticosterone release that is mainly mediated by vanilloid TRPV1 receptors. We also observed that stress significantly increased hypothalamic mRNA levels of CB1 as well as adrenal mRNA levels of TRPV1 receptor. In addition, anandamide reduced the activity of the nitric oxide synthase enzyme during stress, indicating that the anti-stress action of endocannabinoids may involve a reduction in NO production at hypothalamic and adrenal levels. In conclusion, an endogenous cannabinoid tone maintains the HPA axis in a stable basal state, which is lost with a noxious stimulus. In this case, the ECS dampens the response to stress allowing the recovery of homeostasis. Moreover, our work further contributes to in vitro evidence for a participation of the endocannabinoid system by inhibiting corticosterone release directly at the adrenal gland level.”

https://www.ncbi.nlm.nih.gov/pubmed/29065362

http://www.psyneuen-journal.com/article/S0306-4530(17)30614-5/fulltext

Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts.

Image result for Biomedicine & Pharmacotherapy

“Anxiety and anxiety-like disorders describe many mental disorders, yet fear is a common overwhelming symptom often leading to depression. Currently two basic strategies are discussed to treat anxiety: pharmacotherapy or psychotherapy. In the pharmacotherapeutical clinical approach, several conventional synthetic anxiolytic drugs are being used with several adverse effects. Therefore, studies to find suitable safe medicines from natural sources are being sought by researchers. The results of a plethora experimental studies demonstrated that dietary phytochemicals like alkaloids, terpenes, flavonoids, phenolic acids, lignans, cinnamates, and saponins or various plant extracts with the mixture of different phytochemicals possess anxiolytic effects in a wide range of animal models of anxiety. The involved mechanisms of anxiolytics action include interaction with γ-aminobutyric acid A receptors at benzodiazepine (BZD) and non-BZD sites with various affinity to different subunits, serotonergic 5-hydrodytryptamine receptors, noradrenergic and dopaminergic systems, glutamate receptors, and cannabinoid receptors. This review focuses on the use of both plant-derived natural compounds and plant extracts with anxiolytic effects, describing their biological effects and clinical application.”

https://www.ncbi.nlm.nih.gov/pubmed/28863384

 

The effects of cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala and hippocampus on the consolidation of a traumatic event.

Cover image

“Ample evidence demonstrates that fear learning contributes significantly to many anxiety pathologies including post-traumatic stress disorder (PTSD). The endocannabinoid (eCB) system may offer therapeutic benefits for PTSD and it is a modulator of the hypothalamic pituitary adrenal (HPA) axis.

Here we compared the separated and combined effects of blocking glucocorticoid receptors (GRs) using the GR antagonist RU486 and enhancing CB1r signaling using the CB1/2 receptor agonist WIN55,212-2 in the CA1 and basolateral amygdala (BLA) on the consolidation of traumatic memory. Traumatic memory was formed by exposure to a severe footshock in an inhibitory avoidance apparatus followed by exposure to trauma reminders. Intra-BLA RU486 (10 ng/side) and WIN55,212-2 (5 μg/side) administered immediately after shock exposure dampened the consolidation of the memory about the traumatic event and attenuated the increase in acoustic startle response in rats exposed to shock and reminders. In the CA1, WIN55,212-2 impaired consolidation and attenuated the increase in acoustic startle response whereas RU486 had no effect. The effects of WIN55,212-2 were found to be mediated by CB1 receptors, but not by GRs. Moreover, post-shock systemic WIN55,212-2 (0.5 mg/kg) administration prevented the increase in GRs and CB1 receptor levels in the CA1 and BLA in rats exposed to shock and reminders.

The findings suggest that the BLA is a locus of action of cannabinoids and glucocorticoids in modulating consolidation of traumatic memory in a rat model of PTSD. Also, the findings highlight novel targets for the treatment of emotional disorders and PTSD in particular.”

https://www.ncbi.nlm.nih.gov/pubmed/28818702

http://www.sciencedirect.com/science/article/pii/S1074742717301284

Blunted stress reactivity in chronic cannabis users

Psychopharmacology

“One of the most commonly cited reasons for chronic cannabis use is to cope with stress.

Consistent with this, cannabis users have shown reduced emotional arousal and dampened stress reactivity in response to negative imagery.

Chronic cannabis use is associated with blunted stress reactivity.” https://link.springer.com/article/10.1007/s00213-017-4648-z?no-access=true

“WSU study: Regular marijuana users more calm under stress” http://komonews.com/news/local/wsu-study-regular-marijuana-users-more-calm-under-stress

Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder.

Related image

“Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety.

In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the United States, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology.

Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD.

Potential therapeutic implications of the reviewed literature are also discussed. Lastly, we propose that a state of endocannabinoid deficiency could represent a stress-susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28745306

https://www.nature.com/npp/journal/vaop/naam/abs/npp2017162a.html

Cannabinoids as therapeutic for PTSD

Cover image

“Limited efficacy for current pharmacotherapy for PTSD indicates that improved pharmacological treatments are needed. Neurobiological research points to cannabinoids as possible therapeutic agents of interest. Moreover, observational reports indicate that there is growing popular interest in therapeutic use of cannabinoids for the alleviation of trauma symptoms. The aim of this review was to present an up-to-date look at current research on the possible therapeutic value of cannabinoids for PTSD. Experimental, preclinical, and clinical findings are discussed.

Highlights

Neurobiological research indicates cannabis as possible pharmacological intervention for PTSD.

CBD and THC + CBD modulate fear memory in rodents.

Experimental data suggest CBD has acute anti-depressive and anxiolytic effects.

Data suggest THC reduces nightmares and OSA, while THC + CBD could reduce insomnia.

Randomized placebo-controlled human trials of cannabinoids for PTSD are underway.”

http://www.sciencedirect.com/science/article/pii/S2352250X16302342

https://www.researchgate.net/publication/311949481_Cannabinoids_as_therapeutic_for_PTSD