Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation.

Image result for Med Hypotheses

“Psoriasis is a chronic skin disease also affecting other sites such as joints.

This disease highly depends on inflammation and angiogenesis as well as other pathways.

At each step of the psoriasis molecular pathway, different inflammatory cytokines and angiogenic growth factors are involved such as hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor (VEGF), matrix metalo proteinases (MMPs), basic fibroblast growth factor (bFGF), Angiopoitin-2, interleukin-8 (IL-8), IL-17, and IL-2. Beside the mentioned growth factors and cytokines, cellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which play roles in both angiogenesis and inflammation are also involved in the pathogenesis.

Cannabinoids are active compounds of Cannabina Sativa inducing their effects through cannabinoid receptors (CBs).

JWH-133 is a synthetic cannabinoid with strong anti-angiogenic and anti-inflammatory activities. This agent is able to inhibit HIF-1 α, VEGF, MMPs, bFGF, IL-8, IL-17, and other mentioned cytokines and adhesion molecules both in vivo and in vitro.

Altogether, authors suggest using this cannabinoid for treatment of psoriasis due to its potential in suppressing the two main steps of psoriatic pathogenesis.

Of course complementary animal studies and human trials are still required.”

https://www.ncbi.nlm.nih.gov/pubmed/28110689

The Endocannabinoid System and Its Role in Eczematous Dermatoses.

Image result for Dermatitis journal

“The skin serves as the foremost barrier between the internal body and the external world, providing crucial protection against pathogens and chemical, mechanical, and ultraviolet damages. The skin is a central player in the intricate network of immune, neurologic, and endocrine systems. The endocannabinoid system (ECS) includes an extensive network of bioactive lipid mediators and their receptors, functions to modulate appetite, pain, mood, and memory, and has recently been implicated in skin homeostasis. Disruption of ECS homeostasis is implicated in the pathogenesis of several prevalent skin conditions. In this review, we highlight the role of endocannabinoids in maintaining skin health and homeostasis and discuss evidence on the role of ECS in several eczematous dermatoses including atopic dermatitis, asteatotic eczema, irritant contact dermatitis, allergic contact dermatitis, and chronic pruritus. The compilation of evidence may spark directions for future investigations on how the ECS may be a therapeutic target for dermatologic conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28098721

“The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757311/

Targeting Cutaneous Cannabinoid Signaling in Inflammation – A “High”-way to Heal?

Image result for EBioMedicine

“The endocannabinoid system (ECS) is a recently emerging complex regulator of multiple physiological processes. It comprises several endogenous ligands (e.g. N-arachidonoylethanolamine, a.k.a. anandamide [AEA], 2-arachidonoylglycerol [2-AG], palmitoylethanolamide [PEA], etc.), a number of endocannabinoid (eCB)-responsive receptors (e.g. CB1 and CB2, etc.), as well as enzymes and transporters involved in the synthesis and degradation of the eCBs.

Among many other tissues and organs, various members of the ECS were shown to be expressed in the skin as well. Indeed, AEA, 2-AG, CB1 and CB2 together with the major eCB-metabolizing enzymes (e.g. fatty acid amide hydrolase [FAAH], which cleaves AEA to ethanolamine and pro-inflammatory arachidonic acid) were found in various cutaneous cell types. Importantly, the eCB-tone and cannabinoid signaling in general appear to play a key role in regulating several fundamental aspects of cutaneous homeostasis, including proliferation and differentiation of epidermal keratinocytes, hair growth, sebaceous lipid production, melanogenesis, fibroblast activity, etc.

Moreover, appropriate eCB-signaling through CB1 and CB2 receptors was found to be crucially important in keeping cutaneous inflammatory processes under control.

Collectively, these findings (together with many other recently published data) implied keratinocytes to be “non-classical” immune competent cells, playing a central role in initiation and regulation of cutaneous immune processes, and the “c(ut)annabinoid” system is now proven to be one of their master regulators.

Another recently emerging, fascinating possibility to manage cutaneous inflammation through the cannabinoid signaling is the administration of phytocannabinoids (pCB). Cannabis sativa contains over 100 different pCBs, the vast majority of which have no psychotropic activity, and usually possess a “favorable” side-effect profile, which makes these substances particularly interesting drug candidates in treating several inflammation-accompanied diseases.

With respect to the skin, we have recently shown that one of the best studied pCBs, (−)-cannabidiol (CBD), may have great potential in managing acne, an inflammation-accompanied, extremely prevalent cutaneous disease.

Collectively, in light of the above results, both increase/restoration of the homeostatic cutaneous eCB-tone by FAAH-inhibitors and topical administration of non-psychotropic pCBs hold out the promise to exert remarkable anti-inflammatory actions, making them very exciting drug candidates, deserving full clinical exploration as potent, yet safe novel class of anti-inflammatory agents.”

http://www.ebiomedicine.com/article/S2352-3964(17)30003-8/fulltext

Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes.

Image result for The Journal of Immunology

“The endocannabinoid system comprises cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol, and metabolic enzymes of these ligands.

The endocannabinoid system has recently been implicated in the regulation of various pathophysiological processes of the skin that include immune competence and/or tolerance of keratinocytes, the disruption of which might promote the development of skin diseases.

Recent evidence showed that CB1 in keratinocytes limits the secretion of proinflammatory chemokines, suggesting that this receptor might also regulate T cell dependent inflammatory diseases of the skin.

In this article, we sought to investigate the cytokine profile of IFN-γ-activated keratinocytes, and found that CB1 activation by AEA suppressed production and release of signature TH1- and TH17-polarizing cytokines, IL-12 and IL-23, respectively. We also set up cocultures between a conditioned medium of treated keratinocytes and naive T cells to disclose the molecular details that regulate the activation of highly proinflammatory TH1 and TH17 cells.

AEA-treated keratinocytes showed reduced an induction of IFN-γ-producing TH1 and IL-17-producing TH17 cells, and these effects were reverted by pharmacological inhibition of CB1.

Further analyses identified mammalian target of rapamycin as a proinflammatory signaling pathway regulated by CB1, able to promote either IL-12 and IL-23 release from keratinocytes or TH1 and TH17 polarization.

Taken together, these findings demonstrate that AEA suppresses highly pathogenic T cell subsets through CB1-mediated mammalian target of rapamycin inhibition in human keratinocytes.

Thus, it can be speculated that the latter pathway might be beneficial to the physiological function of the skin, and can be targeted toward inflammation-related skin diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/27694494

Cannabinoid system in the skin – a possible target for future therapies in dermatology.

“Cannabinoids and their derivatives are group of more than 60 biologically active chemical agents, which have been used in natural medicine for centuries.

The major agent of exogenous cannabinoids is Delta(9)-tetrahydrocannabinol (Delta(9)-THC), natural psychoactive ingredient of marijuana.

Recent discoveries of endogenous cannabinoids (e.g. arachidonoylethanolamide, 2-arachidonoylglycerol or palmithyloethanolamide) and their receptors initiated discussion on the role of cannabinoid system in physiological conditions as well as in various diseases.

Based on the current knowledge, it could be stated that cannabinoids are important mediators in the skin, however their role have not been well elucidated yet.

In our review, we summarized the current knowledge about the significant role of the cannabinoid system in the cutaneous physiology and pathology, pointing out possible future therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pubmed/19664006

Cannabis for refractory psoriasis-high hopes for a novel treatment and a literature review.

“Psoriasis is a common skin disorder characterized by hyper proliferation of keratinocytes. Although the exact pathophysiology of psoriasis is not entirely understood, immune system and its interaction with nervous system has been postulated and investigated as the underlying mechanism. The interaction between these two systems through cholinergic anti-inflammatory pathway and also endocannabinoid system, may suggest cannabinoids as potential addition to anti-psoriatic armamentarium.”

http://www.ncbi.nlm.nih.gov/pubmed/27164964

http://www.thctotalhealthcare.com/category/psoriasis/

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Cannabinoids and autoimmune diseases: A systematic review.

“Cannabinoids have shown to have a variety effects on body systems. Through CB1 and CB2 receptors, amongst other, they exert an effect by modulating neurotransmitter and cytokine release.

Current research in the role of cannabinoids in the immune system shows that they possess immunosuppressive properties. They can inhibit proliferation of leucocytes, induce apoptosis of T cells and macrophages and reduce secretion of pro-inflammatory cytokines.

In mice models, they are effective in reducing inflammation in arthritis, multiple sclerosis, have a positive effect on neuropathic pain and in type 1 diabetes mellitus.

They are effective as treatment for fibromyalgia and have shown to have anti-fibrotic effect in scleroderma.

Studies in human models are scarce and not conclusive and more research is required in this field.

Cannabinoids can be therefore promising immunosuppressive and anti-fibrotic agents in the therapy of autoimmune disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26876387

http://www.thctotalhealthcare.com/category/autoimmune-disease/

Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model.

“Many inflammatory mediators, including various cytokines (e.g. interleukins and tumor necrosis factor [TNF]), inflammatory proteases, and histamine are released following mast cell activation.

Endogenous cannabinoids such as palmitoylethanolamide (PEA) and N-arachidonoylethanolamine (anandamide or AEA), were found in peripheral tissues and have been proposed to possess autacoid activity, implying that cannabinoids may downregulate mast cell activation and local inflammation.

Our results indicate that CB1R agonists down-regulate mast cell activation and may be used for relieving inflammatory symptoms mediated by mast cell activation, such as atopic dermatitis, psoriasis, and contact dermatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26848215

TRP Channel Cannabinoid Receptors in Skin Sensation, Homeostasis, and Inflammation.

“In the skin, cannabinoid lipids, whether of endogenous or exogenous origin, are capable of regulating numerous sensory, homeostatic and inflammatory events.

Although many of these effects are mediated by metabotropic CB receptors, a growing body of evidence has revealed that multiple members of the transient receptor potential (TRP) ion channel family can act as “ionotropic cannabinoid receptors”.

Furthermore, many of these same TRP channels are intimately involved in cutaneous processes that include the initiation of pain, temperature, and itch perception, the maintenance of epidermal homeostasis, the regulation of hair follicles and sebaceous glands, and the modulation of dermatitis.

Ionotropic cannabinoid receptors therefore represent potentially attractive targets for the therapeutic use of cannabinoids to treat sensory and dermatological diseases.

Furthermore, the interactions between neurons and other cell types that are mediated by cutaneous ionotropic cannabinoid receptors are likely to be recapitulated during physiological and pathophysiological processes in the central nervous system and elsewhere, making the skin an ideal setting in which to dissect general complexities of cannabinoid signaling.”

http://www.ncbi.nlm.nih.gov/pubmed/24915599