Anti-Inflammatory, Antioxidative, and Hepatoprotective Effects of Trans Δ9-Tetrahydrocannabinol/Sesame Oil on Adjuvant-Induced Arthritis in Rats

logo

“Rheumatoid arthritis (RA) is a painful chronic autoimmune disease affecting the joints. Its first-line therapy, Methotrexate (MTX), although effective in ameliorating the progress of the disease, induces hepatotoxicity over long-term usage. Thus, seeking natural compounds with fewer side effects could be an alternative therapeutic approach. This study aimed to investigate the anti-inflammatory, antiarthritic, and antioxidative effects of synthetic trans-Δ9-tetrahydrocannabinol (Δ9-THC) dissolved in sesame oil (Dronabinol) against MTX in adjuvant-induced arthritis (AIA) rat model. Daily oral administration of Δ9-THC/sesame oil, over a period of 21 days, was well tolerated in arthritic rats with no particular psychoactive side effects. It markedly attenuated the severity of clinical manifestations, recovered the histopathological changes in tibiotarsal joints, and repressed the splenomegaly in arthritic rats. Δ9-THC/sesame oil therapy showed similar effects to MTX in neutralizing the inflammatory process of AIA, through attenuating erythrocyte sedimentation rate (ESR) scores and proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and interleukin-6 (IL-6) levels, to normal values. As opposed to MTX, this natural combination markedly protected the liver of arthritic rats and downregulated the induced oxidative stress by increasing the antioxidant defense system such as activities of catalase and superoxide dismutase (SOD) and levels of glutathione (GSH). These results suggest promising effects for the clinical use of Δ9-THC/sesame oil therapy in alleviating arthritic clinical signs as well as arthritis-induced liver injury.”

https://pubmed.ncbi.nlm.nih.gov/30046349/

“Dronabinol (Δ9-THC in sesame oil) is usually used to treat nausea and vomiting caused by chemotherapy or weight loss and loss of appetite in AIDS patients, yet, to the best of our knowledge, this is the first study that proves the antiarthritic and antioxidative effects of this combination in an experimental model of RA with a hepatoprotective effect against arthritis-induced liver injury compared to commonly used antirheumatic drug (MTX).”

https://www.hindawi.com/journals/ecam/2018/9365464/


The Effect of Medical Cannabis on Pain Level and Quality of Sleep among Rheumatology Clinic Outpatients

logo“Introduction: Medical cannabis (MC) is becoming increasingly popular for the treatment of chronic pain conditions.

In this study, we evaluated the effect of MC treatment on pain level and quality of sleep of patients with different medical conditions at the rheumatology clinic.

Conclusions: MC had a favorable effect on pain level and quality of sleep among all spectrums of problems at the rheumatology clinic.”

https://pubmed.ncbi.nlm.nih.gov/34531934/

“MC has a favorable effect on pain level and sleep quality among nearly the entire spectrum of resistant “chronic pain syndromes” seen or referred to rheumatology clinics, including inflammatory diseases resistant to biological treatment, although the effect of MC on synovitis was relatively mild.

Cannabis should be seriously considered in every “chronic pain condition” whenever the accepted modalities of treatment are insufficient for alleviating patient’s pain and sleep problems.”

https://www.hindawi.com/journals/prm/2021/1756588/

Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts

 Cell Death & Disease“Cannabidiol (CBD) is a non-intoxicating phytocannabinoid from cannabis sativa that has demonstrated anti-inflammatory effects in several inflammatory conditions including arthritis.

In this study, we show that CBD increases intracellular calcium levels, reduces cell viability and IL-6/IL-8/MMP-3 production of rheumatoid arthritis synovial fibroblasts (RASF).

CBD reduced cell viability, proliferation, and IL-6/IL-8 production of RASF. Moreover, CBD increased intracellular calcium and uptake of the cationic viability dye PoPo3 in RASF, which was enhanced by pre-treatment with TNF.

Thus, CBD possesses anti-arthritic activity and might ameliorate arthritis via targeting synovial fibroblasts under inflammatory conditions.”

https://pubmed.ncbi.nlm.nih.gov/32873774/

“In conclusion, CBD might be beneficial as an adjuvant treatment in rheumatoid arthritis that might support the action of currently used disease-modifying anti-rheumatic drugs.”

https://www.nature.com/articles/s41419-020-02892-1

Δ9‐TETRAHYDROCANNABINOLIC ACID ALLEVIATES COLLAGEN‐INDUCED ARTHRITIS: ROLE OF PPARγ AND CB1 RECEPTORS

British Journal of Pharmacology “Δ9‐THCA‐A, the precursor of Δ9‐THC, is a non‐psychotropic phytocannabinoid that shows PPARγ agonistic activity. Herein, we investigated Δ9‐THCA ability to modulate classic cannabinoid receptors (CB1 and CB2) and evaluated its anti‐arthritis activity.

Experimental Approach

Cannabinoid receptors binding and intrinsic activity, as well as their downstream signaling were analyzed in vitro and in silico . The anti‐arthritis properties of Δ9‐THCA‐A were studied in human chondrocytes and in the murine model of collagen‐induced arthritis (CIA). Plasmatic disease biomarkers were identified by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) based on proteomic and ELISA assays.

Key Results

Functional and docking analyses showed that Δ9‐THCA‐A can act as an orthosteric CB1 agonist and also as a positive allosteric modulator in the presence of CP‐55,940. In addition, Δ9‐THCA‐A seemed to be an inverse agonist for CB2. In vivo experiments showed that Δ9‐THCA‐A reduced arthritis in CIA mice. Δ9‐THCA‐A prevented the infiltration of inflammatory cells; synovium hyperplasia and cartilage damage. Furthermore, Δ9‐THCA‐A inhibited the expression of inflammatory and catabolic genes on knee joints. The anti‐arthritic effect of Δ9‐THCA‐A was ablated by either SR141716 or T0070907. Analysis of plasmatic biomarkers as well as determination of cytokines and anti‐collagen antibodies confirmed that Δ9‐THCA‐A mediates its activity mainly through PPARγ and CB1 pathways.

Conclusion and Implications

Δ9‐THCA‐A modulates CB1 receptor through the orthosteric and allosteric binding sites. In addition, our studies document that Δ9‐THCA‐A exerts anti‐arthritis activity through CB1/PPARγ pathways, highlighting its potential for the treatment of chronic inflammatory diseases such as Rheumatoid Arthritis (RA).”

https://pubmed.ncbi.nlm.nih.gov/32510591/

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.15155

 British Pharmacological Society | Journals

Cannabidiol: A Brief Review of Its Therapeutic and Pharmacologic Efficacy in the Management of Joint Disease.

Cureus | LinkedIn“Cannabis use in the management of musculoskeletal diseases has gained advocacy since several states have legalized its recreational use.

Cannabidiol (CBD), a commercially available, non-neurotropic marijuana constituent, has shown promise in arthritic animal models by attenuating pro-inflammatory immune responses. Additional research has demonstrated the benefit of CBD in decreasing the endogenous pain response in mice subjected to acute arthritic conditions, and further studies have highlighted improved fracture healing following CBD use in murine mid-femoral fractures.

However, there is a lack of high-quality, novel research investigating the use of CBD in human musculoskeletal diseases aside from anecdotal accounts and retrospective reviews, perhaps due to legal ramifications limiting the enrollment of patients. The purpose of this review article is to highlight the extent of current research on CBD and its biochemical and pharmacologic efficacy in the treatment of joint disease, as well as the evidence for use of CBD and cannabis in patients undergoing joint arthroplasty.

Based on available literature relying on retrospective data and case reports, it is challenging to propose a recommendation for CBD use in perioperative pain management. Additionally, a number of CBD products currently available as supplements with different methods of administration, and it is important to remember that these products are non-pharmaceuticals. However, given the increased social relevance of CBD and cannabis-based medicines, future, prospective controlled studies evaluating their efficacy are needed.”

https://www.ncbi.nlm.nih.gov/pubmed/32328386

https://www.cureus.com/articles/28249-cannabidiol-a-brief-review-of-its-therapeutic-and-pharmacologic-efficacy-in-the-management-of-joint-disease

Cannabis and Cannabinoids in the Treatment of Rheumatic Diseases.

 Logo of rmmj“Chronic pain is a common complaint among patients, and rheumatic diseases are a common cause for chronic pain. Current pharmacological interventions for chronic pain are not always useful or safe enough for long-term use.

Cannabis and cannabinoids are currently being studied due to their potential as analgesics. In this review we will discuss current literature regarding cannabinoids and cannabis as treatment for rheumatic diseases.

Fibromyalgia is a prevalent rheumatic disease that causes diffuse pain, fatigue, and sleep disturbances. Treatment of this syndrome is symptomatic, and it has been suggested that cannabis and cannabinoids could potentially alleviate some of the symptoms associated with fibromyalgia. In this review we cite some of the evidence that supports this claim. However, data on long-term efficacy and safety of cannabinoid and cannabis use are still lacking.

Cannabinoids and cannabis are commonly investigated as analgesic agents, but in recent years more evidence has accumulated on their potential immune-modulatory effect, supported by results in animal models of certain rheumatic diseases. While results that demonstrate the same effect in humans are still lacking, cannabinoids and cannabis remain potential drugs to alleviate the pain associated with rheumatic diseases, as they were shown to be safe and to cause limited adverse effects.”

https://www.ncbi.nlm.nih.gov/pubmed/32017684

Cannabinoids in the treatment of rheumatic diseases: Pros and cons.

Autoimmunity Reviews“Medical cannabis is being increasingly used in the treatment of rheumatic diseases because, despite the paucity of evidence regarding its safety and efficacy, a growing number of countries are legalising its use for medical purposes in response to social pressure.

Cannabinoids may be useful in the management of rheumatic disorders for two broad reasons: their anti-inflammatory and immunomodulatory activity, and their effects on pain and associated symptoms.

It is interesting to note that, although a wide range of medications are available for the treatment of inflammation, including an ever-lengthening list of biological medications, the same is not true of the treatment of chronic pain, a cardinal symptom of many rheumatological disorders.

The publication of systematic reviews (SR) concerning the use of cannabis-based medicines for chronic pain (with and without meta-analyses) is outpacing that of randomised controlled trials. Furthermore, narrative reviews of public institution are largely based on these SRs, which often reach different conclusions regarding the efficacy and safety of cannabis-based medicines because of the lack of high-quality evidence of efficacy and the presence of indications that they may be harmful for patients.

Societal safety concerns about medical cannabis (e.g. driving risks, workplace safety and pediatric intoxication) must always be borne in mind, and will probably not be addressed by clinical studies. Medical cannabis and cannabis-based medicines have often been legalised as therapeutic products by legislative bodies without going through the usual process of regulatory approval founded on the results of traditional evidence-based studies. This review discusses the advantages and limitations of using cannabis to treat rheumatic conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/31648042

https://www.sciencedirect.com/science/article/abs/pii/S1568997219302162?via%3Dihub

β-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-γ Receptors.

biomolecules-logo “β-caryophyllene (BCP) is a cannabinoid receptor 2 (CB2) agonist that tempers inflammation.

An interaction between the CB2 receptor and peroxisome proliferator-activated receptor gamma (PPAR-γ) has been suggested and PPAR-γ activation exerts anti-arthritic effects.

The aim of this study was to characterize the therapeutic activity of BCP and to investigate PPAR-γ involvement in a collagen antibody induced arthritis (CAIA) experimental model.

BCP significantly hampered the severity of the disease, reduced relevant pro-inflammatory cytokines, and increased the anti-inflammatory cytokine IL-13. BCP also decreased joint expression of matrix metalloproteinases 3 and 9. Arthritic joints showed increased COX2 and NF-ĸB mRNA expression and reduced expression of the PPARγ coactivator-1 alpha, PGC-1α, and PPAR-γ. These conditions were reverted following BCP treatment.

Finally, BCP reduced NF-ĸB activation and increased PGC-1α and PPAR-γ expression in human articular chondrocytes stimulated with LPS. These effects were reverted by AM630, a CB2 receptor antagonist.

These results suggest that BCP ameliorates arthritis through a cross-talk between CB2 and PPAR-γ.”

https://www.ncbi.nlm.nih.gov/pubmed/31370242

https://www.mdpi.com/2218-273X/9/8/326

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?

Drug Discovery Today

“Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as Δ9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes. Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes, and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the autoimmune environment and the potential to suppress the development and activation of autoreactive cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and rheumatoid arthritis (RA).”

https://www.ncbi.nlm.nih.gov/pubmed/31158514

https://www.sciencedirect.com/science/article/pii/S1359644618304847?via%3Dihub

A selective CB2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice.

Biomedicine & Pharmacotherapy

“Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1β, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.”

https://www.ncbi.nlm.nih.gov/pubmed/31154267

https://www.sciencedirect.com/science/article/pii/S0753332219307528?via%3Dihub