Cannabidiol effects on prepulse inhibition in nonhuman primates.

 

Image result for Reviews in the Neurosciences

“Prepulse inhibition (PPI) of acoustic startle reflex is a well-established behavior paradigm to measure sensorimotor gating deficits. PPI is disrupted in several neuropsychiatric disorders, including schizophrenia. PPI tests can be used to screen new drugs for treatment of such disorders.

In this review, we discuss how PPI paradigm can help in screening the therapeutic effects of cannabidiol (CBD).

We look into recent literature about CBD effects on PPI response in animal models, especially in nonhuman primates. CBD has been shown to modify PPI in N-methyl d-aspartate receptor antagonist models for schizophrenia, both in rodents and in nonhuman primates.

These results show CBD as a potential drug for the treatment of neurologic disorders that present alterations in sensorimotor system, such as schizophrenia. Moreover, the PPI paradigm seems to be a useful and relative simple paradigm to test the efficacy of CBD as a potential therapeutic drug.”

Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview.

Image result for cambridge university press

“Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms.

Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders.

In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD’s clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29789034

https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/pharmacological-properties-of-cannabidiol-in-the-treatment-of-psychiatric-disorders-a-critical-overview/D7FD68F40CF30CBB48A1025C66873F26

Review of the neurological benefits of phytocannabinoids.

Logo of sni

“Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS.

METHODS:

In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts.

RESULTS:

Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids.

CONCLUSIONS:

In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.”

https://www.ncbi.nlm.nih.gov/pubmed/29770251

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938896/

A Critical Systematic Review of Evidence for Cannabinoids in the Treatment of Schizophrenia

Psychiatric Annals

“Cannabinoids have an emerging evidence base as an effective treatment option in a number of medical conditions, including anorexia and intractable vomiting.

It is well known that patients with schizophrenia are more likely to use cannabis; it has also been argued that this could be a way of self-treating adverse side effects (secondary to antipsychotics) in a group of people with schizophrenia. Therefore, studies have attempted to examine the use of cannabinoids in schizophrenia.

Given the recent interest in the use of cannabinoids in general and the ensuing ethical debates, we systematically review the available literature on the use of four cannabinoids, namely delta-9-tetrahydrocannabinol, dronabinol, rimonabant, and cannabidiol, in the management of schizophrenia. We also offer suggestions for future research in this area.”

https://www.healio.com/psychiatry/journals/psycann/2018-5-48-5/%7B04639e36-7fd1-4e31-aff2-7cea85ea3bc3%7D/a-critical-systematic-review-of-evidence-for-cannabinoids-in-the-treatment-of-schizophrenia

Prolonged Cannabidiol Treatment Effects on Hippocampal Subfield Volumes in Current Cannabis Users.

Cannabis and Cannabinoid Research cover image

“Chronic cannabis use is associated with neuroanatomical alterations in the hippocampus. While adverse impacts of cannabis use are generally attributed to Δ9-tetrahydrocannabinol, emerging naturalistic evidence suggests cannabidiol (CBD) is neuroprotective and may ameliorate brain harms associated with cannabis use, including protection from hippocampal volume loss. This study examined whether prolonged administration of CBD to regular cannabis users within the community could reverse or reduce the characteristic hippocampal harms associated with chronic cannabis use.

Results: No change was observed in left or right hippocampus as a whole. However, left subicular complex (parasubiculum, presubiculum, and subiculum) volume significantly increased from baseline to post-treatment (p=0.017 uncorrected) by 1.58% (Cohen’s d=0.63; 2.83% in parasubiculum). Heavy cannabis users demonstrated marked growth in the left subicular complex, predominantly within the presubiculum, and right cornu ammonis (CA)1 compared to lighter users. Associations between greater right subicular complex and total hippocampal volume and higher plasma CBD concentration were evident, particularly in heavy users.

Conclusions: Our findings suggest a restorative effect of CBD on the subicular and CA1 subfields in current cannabis users, especially those with greater lifetime exposure to cannabis. While replication is required in a larger, placebo-controlled trial, these findings support a protective role of CBD against brain structural harms conferred by chronic cannabis use. Furthermore, these outcomes suggest that CBD may be a useful adjunct in treatments for cannabis dependence and may be therapeutic for a range of clinical disorders characterized by hippocampal pathology (e.g., schizophrenia, Alzheimer’s disease, and major depressive disorder).”

https://www.ncbi.nlm.nih.gov/pubmed/29682609

“In conclusion, our findings are the first to demonstrate an ameliorating effect of CBD treatment upon brain structural harms characteristic of regular cannabis use. Furthermore, these results speak to the potential for CBD treatment to restore hippocampal pathology in a range of clinical populations (e.g., schizophrenia, Alzheimer’s disease, and major depressive disorder).”

https://www.liebertpub.com/doi/10.1089/can.2017.0047

Impact of Chronic Cannabis Use on Auditory Mismatch Negativity Generation in Schizophrenia Patients.

“Cannabis use disorders (CUD) are highly prevalent among patients with schizophrenia (SCZ). Deficient mismatch negativity (MMN) generation is a characteristic finding in SCZ patients and cannabis users. This study therefore examined the effects of CUD on MMN generation in SCZ patients.

These results demonstrate that comorbid cannabis use in SCZ patients might be associated with superior cognitive functioning. It can be assumed that the association between cannabis use and better cognitive performance may be due to a subgroup of cognitively less impaired SCZ patients characterized by lower genetic vulnerability for psychosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29506304

https://www.thieme-connect.de/DOI/DOI?10.1055/a-0573-9866

Cannabinoid Modulation of the Stressed Hippocampus.

 Image result for frontiers in molecular neuroscience

“Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia.

The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function.

Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus.

Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes.

Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels.

Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.”

https://www.ncbi.nlm.nih.gov/pubmed/29311804

https://www.frontiersin.org/articles/10.3389/fnmol.2017.00411/full

Cannabidiol (CBD) as an Adjunctive Therapy in Schizophrenia: A Multicenter Randomized Controlled Trial

Image result for american journal psychiatry

“Research in both animals and humans indicates that cannabidiol (CBD) has antipsychotic properties.

The authors assessed the safety and effectiveness of CBD in patients with schizophrenia.

After 6 weeks of treatment, compared with the placebo group, the CBD group had lower levels of positive psychotic symptoms and were more likely to have been rated as improved and as not severely unwell by the treating clinician.

These findings suggest that CBD has beneficial effects in patients with schizophrenia. As CBD’s effects do not appear to depend on dopamine receptor antagonism, this agent may represent a new class of treatment for the disorder.”

Single-Dose Pharmacokinetics of Oral Cannabidiol Following Administration of PTL101: A New Formulation Based on Gelatin Matrix Pellets Technology.

Clinical Pharmacology in Drug Development

“Cannabidiol (CBD) is the main nonpsychoactive component of the cannabis plant. It has been associated with antiseizure, antioxidant, neuroprotective, anxiolytic, anti-inflammatory, antidepressant, and antipsychotic effects.

PTL101 is an oral gelatin matrix pellets technology-based formulation containing highly purified CBD embedded in seamless gelatin matrix beadlets. Study objectives were to evaluate the safety and tolerability of PTL101 containing 10 and 100 mg CBD, following single administrations to healthy volunteers and to compare the pharmacokinetic profiles and relative bioavailability of CBD with Sativex oromucosal spray (the reference product) in a randomized, crossover study design.

Administration of PTL101 containing 10 CBD, led to a 1.7-fold higher Cmax and 1.3-fold higher AUC compared with the oromucosal spray. Tmax following both modes of delivery was 3-3.5 hours postdosing. CBD exhibited about a 1-hour lag in absorption when delivered via PTL101. A 10-fold increase in the dose resulted in an ∼15-fold increase in Cmax and AUC. Bioavailability of CBD in the 10-mg PTL101 dose was 134% relative to the reference spray.

PTL101 is a pharmaceutical-grade, user-friendly oral formulation that demonstrated safe and efficient delivery of CBD and therefore could be an attractive candidate for therapeutic indications.”

https://www.ncbi.nlm.nih.gov/pubmed/29125702

http://onlinelibrary.wiley.com/doi/10.1002/cpdd.408/abstract

The positive link between executive function and lifetime cannabis use in schizophrenia is not explained by current levels of superior social cognition.

Psychiatry Research Home

“There has been a growing link between a history of cannabis use and neurocognitive performance in patients with schizophrenia. Fewer neurocognitive deficits may be a marker of the superior social cognition needed to obtain illicit substances, or cannabis use may indicate a distinct path to schizophrenia with less neurocognitive vulnerability. This study sought to determine whether the relationship of cannabis use and executive function exists independently of social cognition.

Eighty-seven patients with schizophrenia were administered measures of social cognition and executive function. Social cognition was assessed using the Bell-Lysaker Emotion Recognition Test to measure affect recognition, and the Eyes and Hinting Tests to measure theory of mind. Executive function was assessed by the Mental Flexibility component of the Delis-Kaplan Executive Functioning Scale. The relations between the variables were examined with structural equation modeling.

Cannabis use positively related to executive function, negatively related to affect recognition, and had no relationship with theory of mind. There were no indirect effects of other illicit substances on amount of regular cannabis use. Alcohol use was related to worse affect recognition. The relationship between cannabis use and better executive function was supported and was not explained by superior social cognition.”

https://www.ncbi.nlm.nih.gov/pubmed/28152399

http://www.psy-journal.com/article/S0165-1781(16)31861-3/fulltext