Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression.

Fig. 1

“Cannabinoids are a group of compounds found in the marijuana plant (Cannabis sativaL.). Marijuana has been used both for recreational and medicinal purposes for several centuries.

Cannabinoids have been shown to be effective in the treatment of nausea and vomiting associated with cancer chemotherapy, anorexia and cachexia seen in HIV/AIDS patients, as well as neuropathic pain, and spasticity in multiple sclerosis.

More recently, the anti-inflammatory properties of cannabinoids are drawing significant attention. In the last 15 years, studies with marijuana cannabinoids led to the discovery of cannabinoid receptors (CB1 and CB2) and their endogenous ligands, which make up what is known as the endocannabinoid system.

Cannabinoids are a group of compounds present in Cannabis plant (Cannabis sativa L.). They mediate their physiological and behavioral effects by activating specific cannabinoid receptors. With the recent discovery of the cannabinoid receptors (CB1 and CB2) and the endocannabinoid system, research in this field has expanded exponentially.

Cannabinoids have been shown to act as potent immunosuppressive and anti-inflammatory agents and have been shown to mediate beneficial effects in a wide range of immune-mediated diseases such as multiple sclerosis, diabetes, septic shock, rheumatoid arthritis, and allergic asthma.

Cannabinoid receptor 1 (CB1) is mainly expressed on the cells of the central nervous system as well as in the periphery. In contrast, cannabinoid receptor 2 (CB2) is predominantly expressed on immune cells. The precise mechanisms through which cannabinoids mediate immunosuppression is only now beginning to be understood…

In this review, we will focus on apoptotic mechanisms of immunosuppression mediated by cannabinoids on different immune cell populations and discuss how activation of CB2 provides a novel therapeutic modality against inflammatory and autoimmune diseases as well as malignancies of the immune system, without exerting the untoward psychotropic effects…

…cannabinoids do induce apoptosis in immune cells, alleviating inflammatory responses and protecting the host from acute and chronic inflammation.

The cumulative effect of cannabinoids on all cell populations of the immune system can be beneficial, when there is a need for immune suppression.

For example, in patients with autoimmune diseases such as multiple sclerosis, arthritis and lupus, or in those with septic shock, where the disease is caused by activated immune cells, targeting the immune cells via CB2 agonists may trigger apoptosis and act as anti-inflammatory therapy.

CB2 select agonists are not psychoactive and because CB2 is expressed primarily in immune cells, use of CB2 agonists could provide a novel therapeutic modality against autoimmune and inflammatory diseases.

In addition to the use of exogenous cannabinoids, in vivo manipulation of endocannabinoids may also offer novel treatment opportunities against cancer and autoimmune diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005548/

Novel approaches to the development of anti-sepsis drugs.

“Sepsis is the dysregulated systemic immune response to an infection…

The authors discuss specific pharmacological approaches with a focus on immune modulation, for example, Toll-like receptor 4 inhibition and modulation of the endocannabinoid system.”

 http://www.ncbi.nlm.nih.gov/pubmed/24697209

http://www.thctotalhealthcare.com/category/sepsis-2/

CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis.

“Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens.

Here we examined the role of CB(2) receptors in regulating the host’s response to sepsis…

Taken together, our results establish for the first time that CB(2) receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2) receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712683/

Cannabinoid receptor 1 inhibition improves the intestinal microcirculation.

“The data supports the involvement of the CB1R signaling in leukocyte activation during sepsis. Drugs targeting the CB1R may have therapeutic potential in systemic inflammation, such as sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/23334604

“Cannabinoid receptor 1 inhibition causes seizures during anesthesia induction in experimental sepsis… The data suggest that CB1R inhibition in combination with pentobarbital may increase the incidence of anesthetic-induced seizures in the case of sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/22504215

 

Cannabinoid receptor 2 activation reduces intestinal leukocyte recruitment and systemic inflammatory mediator release in acute experimental sepsis.

“The aim of this study was to investigate the effects of CB2R manipulation on leukocyte activation within the intestinal microcirculation in two acute experimental sepsis models…

CB2R activation reduces leukocyte activation and systemic release of inflammatory mediators in acute experimental sepsis. Drugs targeting the CB2R pathway may have therapeutic potential in sepsis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681373/

The cannabinoid 2 receptor as a potential therapeutic target for sepsis.

“The sepsis syndrome represents an improper immune response to pathogens and is associated with an unacceptably high rate of mortality. Although supportive care is of benefit to the septic patient, there are no viable therapeutics available that target the immune system suitable for the whole septic population. Recently, using a physiologically relevant murine mouse model, the cannabiniod 2 receptor has been shown to play a critical role in the host response to sepsis. Here, the structure, expression, signaling, and function of the CB2 receptor on leukocytes will be reviewed. Further, the effects mediated by the CB2 receptor during sepsis will be reviewed. Altogether, alterations in inflammation and the host response during sepsis by the CB2 receptor support its use as a possible therapeutic agent.”

http://www.ncbi.nlm.nih.gov/pubmed/20509835

http://www.thctotalhealthcare.com/category/sepsis-2/

Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis.

“Sepsis is a complex condition that results from a dysregulated immune system in response to a systemic infection. Current treatments lack effectiveness in reducing the incidence and mortality associated with this disease. The endocannabinoid system offers great promise in managing sepsis pathogenesis due to its unique characteristics.

The present study explored the effect of modulating the CB2 receptor pathway in an acute sepsis mouse model.

Using various compounds we have shown different mechanisms of activating CB2 receptors to reduce leukocyte endothelial interactions in order to prevent further inflammatory damage during sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/24803745

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Cannabinoid Receptor 2 Protects against Acute Experimental Sepsis in Mice.

“The systemic inflammatory response syndrome can be self-limited or can progress to severe sepsis and septic shock. Despite significant advances in the understanding of the molecular and cellular mechanisms of septic shock, it is still one of the most frequent and serious problems confronting clinicians in the treatments. And the effects of cannabinoid receptor 2 (CB2R) on the sepsis still remain undefined.

 The present study was aimed to explore the role and mechanism of CB2R in acute sepsis model of mice. Here, we found that mice were more vulnerable for lipopolysaccharide- (LPS-) induced death and inflammation after CB2R deletion (CB2R(-/-)). CB2R agonist, GW405833, could significantly extend the survival rate and decrease serum proinflammatory cytokines in LPS-treated mice. GW405833 dose-dependently inhibits proinflammatory cytokines release in splenocytes and peritoneal macrophages as well as splenocytes proliferation, and these effects were partly abolished in CB2R(-/-) splenocytes but completely abolished in CB2R(-/-) peritoneal macrophages. Further studies showed that GW405833 inhibits LPS-induced phosphorylation of ERK1/2 and STAT3 and blocks I κ B α degradation and NF- κ B p65 nuclear translocation in macrophages.

 All data together showed that CB2R provides a protection and is a potential therapeutic target for the sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/23781122