Role of cannabinoids and endocannabinoids in cerebral ischemia

“The human costs of stroke are very large and growing; it is the third largest cause of death in the United States and survivors are often faced with loss of ability to function independently. There is a large need for therapeutic approaches that act to protect neurons from the injury produced by ischemia and reperfusion… 

 Overall, the available data suggest that inhibition of CB1 receptor activation together with increased CB2 receptor activation produces beneficial effects.

These studies support the hypothesis that activation of the CB1 receptor by highly efficacious, exogenous agonists during the acute phase of ischemia decreases the likelihood of the occurrence of a detrimental event at the time of ischemia and thereby reduces the amount of infarction and neuronal death long-term… A protective role of the CB1 receptor is also supported by studies…

While it is possible that the ECS will be added to the long list of neuroprotective agents that show promise in animals and do not work in humans, there are a few reasons to be optimistic about this class of drugs. First, many of the other agents did not work because they do not cross the blood brain barrier. While the considerable lipophilicity of the cannabinoids poses its own set of problems, these drugs have no problems entering the brain. Second, the ECS is multifactorial and could “cover” multiple biochemical pathways in a single drug. Third, manipulations of the ECS has been shown to be beneficial in several preclinical models. Only time and further research will answer the most important question, are the cannabinoids of therapeutic benefit in humans suffering from stroke?”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581413/

 

Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke.

“Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate.

Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage.

Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders.

The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.”

http://www.ncbi.nlm.nih.gov/pubmed/17979695

Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning

“This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.

In this review, we will discuss the triggers and sources of endocannabinoid production during various forms of I/R injury (myocardial, cerebral, hepatic and retinal ischaemia, and circulatory shock) and preconditioning, as well as the diverse role of these novel mediators and their receptors in these processes. We will also overview the accumulating evidence obtained through the use of various synthetic CB1/CB2 receptor ligands, with particular focus on the novel role of CB2 receptors, suggesting that the modulation of the endocannabinoid system can be therapeutically exploited in various forms of I/R injury.

Cerebral I/R (stroke)

The first evidence for the neuroprotective effect of CBs came from the stroke research field from studies using synthetic non-psychotropic CB Dexanabinol/HU-211, which exerted its beneficial effects through CB1/CB2-independent mechanisms.

Collectively, it appears that both CB1 agonists and antagonists may afford neuroprotective effects against cerebral I/R…

There is considerable interest in the development of selective CB2 receptor agonists, which are devoid of psychoactive properties of CB1 agonists, for various inflammatory disorders. Further studies should also establish the therapeutic window of protection during the reperfusion phase with the currently available CB2 receptor agonists, and new compounds should also be designed with better in vivo bioavailability, to devise clinically relevant treatment strategies against various forms of I/R. Nevertheless, the recently observed beneficial effects of CB2 receptor agonists in hepatic and other forms of I/R, coupled with the absence of psychoactive properties, and antifibrotic effects of CB2 receptor in the liver suggest that this approach may represent a novel promising strategy against various forms of I/R injury and other inflammatory disorders.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219536/

CB1 cannabinoid receptor induction in experimental stroke.

“Cannabinoids protect cortical neurons from ischemic injury by interacting with CB1 receptors. Because a variety of neuroprotective genes are induced in cerebral ischemia, we examined the effect of experimental stroke, produced by 20 minutes of middle cerebral artery occlusion in rats, on CB1 receptor expression.

Western blotting and immunohistochemistry showed that CB1 expression on neurons was increased in the arterial boundary zone of the cortical mantle, beginning by 2 hours and persisting for 72 hours or more after ischemia.

These findings are consistent with a neuroprotective role for endogenous cannabinoid signaling pathways and with a potential therapeutic role in stroke for drugs that activate CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/10939579

Increased Severity of Stroke in CB1 Cannabinoid Receptor Knock-Out Mice

“These findings indicate that endogenous cannabinoid signaling pathways protect mice from ischemic stroke by a mechanism that involves CB1 receptors, and suggest that both blood vessels and neurons may be targets of this protective effect.

 Endogenous cannabinoid signaling pathways have been implicated in protection of the brain from hypoxia, ischemia, and trauma…

Cannabinoids, which include the marijuana constituent Δ9-tetrahydrocannabinol and endogenous cannabinoids (endocannabinoids) produced in the brain, exert many of their effects through the G-protein-coupled CB1 receptor.

Cannabinoids reduce neuronal death from a variety of insults, including excitotoxicity, oxidative stress, hypoxia, ischemic stroke and trauma…

Clinical stroke, which usually results from cerebral ischemia, is a common and frequently incapacitating problem for which satisfactory treatment is generally unavailable. Identifying new endogenous systems that mitigate ischemic brain injury through effects on neurons, blood vessels, or both (such as the endocannabinoid signaling pathway) may help to guide the search for improved therapies.”

Full text: http://www.jneurosci.org/content/22/22/9771.long

The development of cannabinoid CBII receptor agonists for the treatment of central neuropathies.

“Cannabinoids have been used in the treatment of nausea and emesis, anorexia and cachexia, tremor and pain associated with multiple sclerosis. These treatments are limited by the psychoactive side-effects of CBI activation. Recently CBII has been described within the CNS, both in microglia and neuronal progenitor cells (NPCs), but with few exceptions, not by neurons within the CNS.

This has suggested that CBII agonists could have potential to treat various conditions without psycho-activity.

This article reviews the potential for CBII agonists as treatments for neurological conditions, with a focus on microglia and NPCs as drug targets. We first discuss the role of microglia in the healthy brain, and then the role of microglia in chronic neuroinflammatory disorders, including Alzheimer’s disease and Parkinson’s disease, as well as in neuroinflammation following acute brain injury such as stroke and global hypoxia. As activation of CBII receptor on microglia results in suppression of the proliferation and activation of microglia, there is potential for the anti-inflammatory properties of CBII agonist to treat neuropathologies that involve heightened microglia activity. In addition, activating CBII receptors may result in an increase in proliferation and affect migration of NPCs.Therefore, it is possible that CBII agonists may assist in the treatment of neuropathologies by increasing neurogenesis…”

http://www.ncbi.nlm.nih.gov/pubmed/20236042

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long