Modulation of Cannabinoid Receptor Activation as a Neuroprotective Strategy for EAE and Stroke

“These results provide evidence that alteration of the activation patterns of the various cannabinoid receptors warrant consideration for future therapeutic strategies.

Interest in the medicinal use of Cannabis sativa (marijuana) has a long historical record, extending back thousands of years. In comparison to the extensive history for medicinal applications of marijuana, the existence of an “endocannabinoid system”, with important homeostatic and pathologic functions, has only recently gained appreciation. The endocannabinoid system consists of endogenously produced cannabinoids, their receptors, and the enzymes responsible for their synthesis and degradation…

Although used in ancient Greece, Rome, and China for therapeutic purposes, concern about the use of cannabinoids as a drug of abuse has dampened interest in developing the potential therapeutic benefits of these compounds. However, a better understanding of the biologic effects has led recently to an upsurge in interest for the development of therapeutic drugs through modification of the endocannabinoid system. An additional incentive was provided by the development of synthetic cannabinoid analogs and specific inhibitors of cannabinoid receptors. Several excellent reviews cover the therapeutic potential of cannabinoids….

The present review is focused on the effects of CB2 receptor activation in models of multiple sclerosis (experimental autoimmune encephalomyelitis) and stroke (middle cerebral occlusion/reperfusion).

In summary, selective CB2 receptor agonists and CB1 receptor antagonists have significant potential for neuroprotection in animal models of two devastating diseases that currently lack effective treatment options.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855650/

Modulation of The Balance Between Cannabinoid CB1 and CB2 Receptor Activation During Cerebral Ischemic/Reperfusion Injury

“A number of investigations have shown that CB2 receptor activation has anti-inflammatory therapeutic potential in various CNS diseases, such as multiple sclerosis, traumatic brain injury and Alzheimer’s disease. Because inflammatory responses have been shown to be important contributors to secondary injury following cerebral ischemia; the CB2 receptor has been investigated as a potential therapeutic target in stroke…

The most striking changes were obtained by combing a CB1 antagonist with a CB2 agonist. This combination elevated the cerebral blood flow during ischemia and reduced infarction by 75%…during cerebral ischemia/reperfusion injury, inhibition of CB1 receptor activation is protective while inhibition of CB2 receptor activation is detrimental.

 The greatest degree of neuroprotection was obtained by combining an inhibitor of CB1 activation with an exogenous CB2 agonist.

In conclusion, the results of this investigation demonstrate dynamic changes in the expression of CB1 and CB2 receptors during cerebral ischemic/reperfusion injury in mice. The effects of stimulation of these receptors on damage ischemia/reperfusion injury differed dramatically. Stimulation of the CB2 receptor was found to be neuroprotective, while inhibition of the CB1 receptor was also protective,too. The combination of a CB2 agonist and a CB1 antagonist provided the greatest degree of protection and indicated a synergistic effect derived from combining these agents. Therefore, changing the balance of stimulation of these receptors by endogenous cannabinoids may provide an important therapeutic strategy during stroke.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577828/

Role of cannabinoids and endocannabinoids in cerebral ischemia

“The human costs of stroke are very large and growing; it is the third largest cause of death in the United States and survivors are often faced with loss of ability to function independently. There is a large need for therapeutic approaches that act to protect neurons from the injury produced by ischemia and reperfusion… 

 Overall, the available data suggest that inhibition of CB1 receptor activation together with increased CB2 receptor activation produces beneficial effects.

These studies support the hypothesis that activation of the CB1 receptor by highly efficacious, exogenous agonists during the acute phase of ischemia decreases the likelihood of the occurrence of a detrimental event at the time of ischemia and thereby reduces the amount of infarction and neuronal death long-term… A protective role of the CB1 receptor is also supported by studies…

While it is possible that the ECS will be added to the long list of neuroprotective agents that show promise in animals and do not work in humans, there are a few reasons to be optimistic about this class of drugs. First, many of the other agents did not work because they do not cross the blood brain barrier. While the considerable lipophilicity of the cannabinoids poses its own set of problems, these drugs have no problems entering the brain. Second, the ECS is multifactorial and could “cover” multiple biochemical pathways in a single drug. Third, manipulations of the ECS has been shown to be beneficial in several preclinical models. Only time and further research will answer the most important question, are the cannabinoids of therapeutic benefit in humans suffering from stroke?”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581413/

 

Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke.

“Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate.

Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage.

Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders.

The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.”

http://www.ncbi.nlm.nih.gov/pubmed/17979695

Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning

“This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.

In this review, we will discuss the triggers and sources of endocannabinoid production during various forms of I/R injury (myocardial, cerebral, hepatic and retinal ischaemia, and circulatory shock) and preconditioning, as well as the diverse role of these novel mediators and their receptors in these processes. We will also overview the accumulating evidence obtained through the use of various synthetic CB1/CB2 receptor ligands, with particular focus on the novel role of CB2 receptors, suggesting that the modulation of the endocannabinoid system can be therapeutically exploited in various forms of I/R injury.

Cerebral I/R (stroke)

The first evidence for the neuroprotective effect of CBs came from the stroke research field from studies using synthetic non-psychotropic CB Dexanabinol/HU-211, which exerted its beneficial effects through CB1/CB2-independent mechanisms.

Collectively, it appears that both CB1 agonists and antagonists may afford neuroprotective effects against cerebral I/R…

There is considerable interest in the development of selective CB2 receptor agonists, which are devoid of psychoactive properties of CB1 agonists, for various inflammatory disorders. Further studies should also establish the therapeutic window of protection during the reperfusion phase with the currently available CB2 receptor agonists, and new compounds should also be designed with better in vivo bioavailability, to devise clinically relevant treatment strategies against various forms of I/R. Nevertheless, the recently observed beneficial effects of CB2 receptor agonists in hepatic and other forms of I/R, coupled with the absence of psychoactive properties, and antifibrotic effects of CB2 receptor in the liver suggest that this approach may represent a novel promising strategy against various forms of I/R injury and other inflammatory disorders.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219536/

CB1 cannabinoid receptor induction in experimental stroke.

“Cannabinoids protect cortical neurons from ischemic injury by interacting with CB1 receptors. Because a variety of neuroprotective genes are induced in cerebral ischemia, we examined the effect of experimental stroke, produced by 20 minutes of middle cerebral artery occlusion in rats, on CB1 receptor expression.

Western blotting and immunohistochemistry showed that CB1 expression on neurons was increased in the arterial boundary zone of the cortical mantle, beginning by 2 hours and persisting for 72 hours or more after ischemia.

These findings are consistent with a neuroprotective role for endogenous cannabinoid signaling pathways and with a potential therapeutic role in stroke for drugs that activate CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/10939579

Increased Severity of Stroke in CB1 Cannabinoid Receptor Knock-Out Mice

“These findings indicate that endogenous cannabinoid signaling pathways protect mice from ischemic stroke by a mechanism that involves CB1 receptors, and suggest that both blood vessels and neurons may be targets of this protective effect.

 Endogenous cannabinoid signaling pathways have been implicated in protection of the brain from hypoxia, ischemia, and trauma…

Cannabinoids, which include the marijuana constituent Δ9-tetrahydrocannabinol and endogenous cannabinoids (endocannabinoids) produced in the brain, exert many of their effects through the G-protein-coupled CB1 receptor.

Cannabinoids reduce neuronal death from a variety of insults, including excitotoxicity, oxidative stress, hypoxia, ischemic stroke and trauma…

Clinical stroke, which usually results from cerebral ischemia, is a common and frequently incapacitating problem for which satisfactory treatment is generally unavailable. Identifying new endogenous systems that mitigate ischemic brain injury through effects on neurons, blood vessels, or both (such as the endocannabinoid signaling pathway) may help to guide the search for improved therapies.”

Full text: http://www.jneurosci.org/content/22/22/9771.long

The development of cannabinoid CBII receptor agonists for the treatment of central neuropathies.

“Cannabinoids have been used in the treatment of nausea and emesis, anorexia and cachexia, tremor and pain associated with multiple sclerosis. These treatments are limited by the psychoactive side-effects of CBI activation. Recently CBII has been described within the CNS, both in microglia and neuronal progenitor cells (NPCs), but with few exceptions, not by neurons within the CNS.

This has suggested that CBII agonists could have potential to treat various conditions without psycho-activity.

This article reviews the potential for CBII agonists as treatments for neurological conditions, with a focus on microglia and NPCs as drug targets. We first discuss the role of microglia in the healthy brain, and then the role of microglia in chronic neuroinflammatory disorders, including Alzheimer’s disease and Parkinson’s disease, as well as in neuroinflammation following acute brain injury such as stroke and global hypoxia. As activation of CBII receptor on microglia results in suppression of the proliferation and activation of microglia, there is potential for the anti-inflammatory properties of CBII agonist to treat neuropathologies that involve heightened microglia activity. In addition, activating CBII receptors may result in an increase in proliferation and affect migration of NPCs.Therefore, it is possible that CBII agonists may assist in the treatment of neuropathologies by increasing neurogenesis…”

http://www.ncbi.nlm.nih.gov/pubmed/20236042

Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity

“These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.”

“In summary, we have shown that in an in vivo model of neurodegeneration Δ9-THC reduces neuronal damage via a CB1-receptor-mediated mechanism. This holds in both the acute and late phase after induction of excitotoxicity. Δ9-THC inhibits astrogliosis via a non-CB1-receptor-controlled mechanism. The results strengthen the concept that the endogenous cannabinoid system may serve to establish a defense system for the brain. This system may be functional in several neurodegenerative diseases in which excitotoxicity is thought to play a role, such as amyotrophic lateral sclerosis, Huntington’s and Parkinson’s diseases, and also in acute neuronal damage as found in stroke and traumatic brain injury. It is conceivable that the endogenous cannabinoid system can be exploited for therapeutic interventions in these types of primarily incurable diseases.”

http://www.jneurosci.org/content/21/17/6475.long

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985