Expression of the Endocannabinoid Receptor 1 in Human Stroke: An Autoptic Study.

“Stroke is one of the leading causes of disability and death in the world.

The endocannabinoid (eCB) system is upregulated in several neurological diseases including stroke. A previous animal study demonstrated an increased expression of the endocannabinoid receptor 1 (CB1R) in the penumbra area surrounding the ischemic core, suggesting a crucial role in inflammation/reperfusion after stroke. Regarding the localization of CB1/CB2 receptors, animal studies showed that cortical neurons, activated microglia, and astroglia are involved. Our aim was to evaluate the cerebral expression of CB1R in the ischemic brain areas of 9 patients who died due to acute cerebral infarction in the middle cerebral artery territory.

METHODS:

The cerebral autoptic tissue was collected within 48 hours since death. Ischemic and contralateral normal-appearing areas were identified. After tissue preprocessing, 4-µm-thick cerebral sections were incubated with the primary CB1R antibodies (Cayman Chemical Company, Ann Arbor, MI). Thereafter, all cerebral sections were hematoxylin treated. In each section, the total cell number and CB1R-positive cells were counted and the CB1R-positive cell count ratio was calculated. For statistical analysis, Student’s t-test was used.

RESULTS:

In normal tissue, CB1R-positive neurons were the majority; a few non-neuronal cells expressed CB1R. In the ischemic areas, a few neurons were detectable. A significant increase in total CB1R staining was found in the ischemic regions compared to contralateral areas.

CONCLUSIONS:

We found an increase in CB1R expression in the ischemic region (neuronal and non-neuronal cell staining), suggesting the inflammatory reaction to the ischemic insult. Whether such response might mediate neuroprotective actions or excitotoxicity-related detrimental effects is still unclear.”

http://www.ncbi.nlm.nih.gov/pubmed/27425766

Cannabidiol protects an in vitro model of the blood-brain barrier from oxygen-glucose deprivation via PPARγ and 5-HT1A receptors.

“In vivo and in vitro studies have demonstrated a protective effect of cannabidiol (CBD) in reducing infarct size in stroke models and against epithelial barrier damage in numerous disease models.

We aimed to investigate whether CBD also affects blood-brain barrier (BBB) permeability following ischaemia.

CONCLUSIONS AND IMPLICATIONS:

These data suggest that preventing permeability changes at the BBB could represent an as yet unrecognized mechanism of CBD-induced neuroprotection in ischaemic stroke, a mechanism mediated by activation of PPARγ and 5-HT1A receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/26497782

Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation.

“Increasing evidence has demonstrated the role of endogenous cannabinoids system (ECS) on protecting brain injury caused by ischemia (IMI). Papers reported that microglia-mediated inflammation has become one of the most pivotal mechanisms for IMI. This study was aimed to investigate the potential roles of ECS on neuron protection under microglia-mediated inflammation. Inflammatory cytokines level both in vitro (BV-2 cells) and in vivo (brain tissue from constructed IMI model and brain-isolated microglia) was detected. ECS levels were detected, and its effects on inflammations was also analyzed. Influence of microglia-mediated inflammation on neuron injury was analyzed. Moreover, the effects of ECS on protecting neuron injury were also analyzed. Our results showed that the levels of inflammatory cytokines including TNFα and IL-1β were higher while IKBα was lower in IMI model brain tissue, brain-isolated microglia and BV-2 cells compared to the control. Inflammation was activated in microglia, as well as the activation of ECS characterized by the increasing level of AEA and 2-AG. Furthermore, the activated microglia-mediated self-inflammation performed harmful influence on neurons via suppressing cell viability and inducing apoptosis. Moreover, ECS functioned as a protector on neuron injury though promoting cell proliferation and suppressing cell apoptosis which were caused by the activated BV-2 cells (LPS induced for 3 h). Our data suggested that ECS may play certain neuroprotective effects on microglia-mediated inflammations-induced IMI through anti-inflammatory function.”

http://www.ncbi.nlm.nih.gov/pubmed/27398146

Endocannabionoid System in Neurological Disorders.

“Several studies support the evidence that the endocannabinoid system and cannabimimetic drugs might have therapeutic potential in numerous pathologies. These pathologies range from neurological disorders, atherosclerosis, stroke, cancer to obesity/metabolic syndrome and others.

In this paper we review the endocannabinoid system signaling and its alteration in neurodegenerative disorders like multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease and discuss the main findings about the use of cannabinoids in the therapy of these pathologies.

Despite different etiologies, neurodegenerative disorders exhibit similar mechanisms like neuro-inflammation, excitotoxicity, deregulation of intercellular communication, mitochondrial dysfunction and disruption of brain tissue homeostasis.

Current treatments ameliorate the symptoms but are not curative.

Interfering with the endocannabinoid signaling might be a valid therapeutic option in neuro-degeneration.

To this aim, pharmacological intervention to modulate the endocannabinoid system and the use of natural and synthetic cannabimimetic drugs have been assessed. CB1 and CB2 receptor signaling contributes to the control of Ca2+ homeostasis, trophic support, mitochondrial activity, and inflammatory conditions.

Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27364363

Cannabimimetic Drugs: Recent Patents in Central Nervous System Disorders.

“Agents acting via cannabinoid receptors have been widely developed; starting from the chemical structure of phytocannabinoids isolated from cannabis sativa plant, specific and selective compounds of these receptors have been produced ranging from partial to full agonists and /or antagonists endowed with different potency.

The enhanced interest on developing such classes of drugs is due to the beneficial properties widely reported by both anecdotal reports and scientific studies describing the potential medicinal use of cannabinoids and their derivatives in numerous pathological conditions in both in vitro and in vivo models.

The use of these drugs has been found to be of benefit in a wide number of neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases, just to mention some.

In particular, being the cannabinoid CB1 receptor a central receptor expressed by neurons of the central nervous system, the attention for the treatment of neurological diseases has been mainly focused on compounds acting via this receptor, however some of these compounds has been showed to act by alternative pathways in some cases unrelated to CB1 receptors.

Nonetheless, endocannabinoids are potent regulators of the synaptic function in the central nervous system and their levels are modulated in neurological diseases.

In this study, we focused on endocannabinoid mechanism of action in neuronal signaling and on cannabimimetic drug potential application in neurological disorders.

Finally, novel patents on cannabis-based drugs with applicability in central nervous system disorders are highlighted, to suggest future potential therapeutic utility of derivatives of this ancient plant.”

http://www.ncbi.nlm.nih.gov/pubmed/27334611

Hypothermia induced by delta9-tetrahydrocannabinol in rats with electrolytic lesions of preoptic region.

“The preoptic region (POR) is a primary central site for thermoregulation. Bilateral lesions of POR disrupt thermoregulation, and in rats, produce a characteristic syndrome including hyperthermia.

delta9-Tetrahydrocannabinol (delta9-THC), a potent hypothermic agent, appears to mediate this effect via some central mechanism. The studies reported here suggest that delta9-THC induces hypothermia at a site other than POR.

These data demonstrate that delta9-THC is able to induce a hypothermic response in rats whose body temperatures were elevated by POR ablation. Although delta9-THC does not appear to act primarily at POR to induce hypothermia, it is evident than an intact POR plays a role in modifying the duration and magnitude of delta9-THC induced hypothermia.”

http://www.ncbi.nlm.nih.gov/pubmed/996043

Pharmacological hypothermia: a potential for future stroke therapy?

“Mild physical hypothermia after stroke has been associated with positive outcomes.

Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models.

Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives.

This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.”

http://www.ncbi.nlm.nih.gov/pubmed/27320243

No Link Between Marijuana Use and Stroke Risk

Medpage Today

“There was no evidence that marijuana use was associated with an increased risk of ischemic stroke in adolescents and young adults, a researcher said here.

“Our data did not support” a link between the drug and stroke risk”

http://www.medpagetoday.com/meetingcoverage/aan/45577

“Cannabinoids in experimental stroke: a systematic review and meta-analysis. Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. Cannabinoids reduced infarct volume in transient and permanent ischemia and in all subclasses: endocannabinoids, CB1/CB2 ligands, CB2 ligands, cannabidiol, Δ9-tetrahydrocannabinol, and HU-211. Overall, CBs significantly reduced infarct volume and improve functional outcome in experimental stroke.” http://www.ncbi.nlm.nih.gov/pubmed/25492113

http://www.thctotalhealthcare.com/category/stroke-2/

Phytocannabinoids and cannabimimetic drugs: recent patents in central nervous system disorders.

“Starting from the chemical structure of phytocannabinoids, isolated from Cannabis sativa plant, research groups designed numerous cannabimimetic drugs.

These compounds according to their activities can be partial, full agonists and antagonists of cannabinoid receptors.

Anecdotal reports and scientific studies described beneficial properties of cannabinoids and their derivatives in several pathological conditions like neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases.

The cannabinoid CB1 receptor was considered particularly interesting for therapeutic approaches in neurological diseases, because primarily expressed by neurons of the central nervous system. In many experimental models, these drugs act via this receptor, however, CB1 receptor independent mechanisms have been also described. Furthermore, endogenous ligands of cannabinoid receptors, the endocannabinoids, are potent modulators of the synaptic function in the brain. In neurological diseases, numerous studies reported modulation of the levels of endocannabinoids according to the phase of the disease and its progression.

CONCLUSIONS:

Finally, although the study of the mechanisms of action of these compounds is still unsolved, many reports and patents strongly suggest therapeutic potential of these compounds in neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27184693

Stimulated CB1 Cannabinoid Receptor Inducing Ischemic Tolerance and Protecting Neuron from Cerebral Ischemia.

“Anandamide system is mainly made up of cannabinoid receptors, their endogenous ligands and some related enzymes. Activation of the system mediates various molecular events, thereafter leading to vasodilation, bradycardia and anti-inflammation.

The stimulated cannabinoid receptors may take part in protection of endothelial cells from injury and therefore can be potential targets in therapy for some diseases, especially cardio or cerebral vascular disturbances.

Cerebral ischemia is a deadly disease that modern people have to face and will probably face for a long period of time. Ischemic tolerance has the protective effect of brain as an endogenous event in cerebral ischemia, in which variety of inducers such as transient cerebral ischemia, hypoxia, hypothermia and drug agents are involved.

Most of cannabinoid 1 receptors (CB1Rs), a member in G protein-coupled receptor family, exist in central nervous systems.

Mechanism of neuroprotection mediated by the receptor is considered through facilitating neurotransmitter release and regulating other molecular events. In this review, advance of the neuroprotection against cerebral ischemia and the mechanism of the action are overviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/27142423

“Cerebral ischemia or brain ischemia, is a condition that occurs when there isn’t enough blood flow to the brain to meet metabolic demand. This leads to limited oxygen supply or cerebral hypoxia and leads to the death of brain tissue, cerebral infarction, or ischemic stroke. It is a sub-type of stroke along with subarachnoid hemorrhage and intracerebral hemorrhage. There are two kinds of ischemia: focal ischemia: confined to a specific region of the brain; global ischemia: encompasses wide areas of brain tissue.”  http://www.columbianeurosurgery.org/conditions/cerebral-ischemia/