Emerging nano-derived therapy for the treatment of dementia: a comprehensive review

pubmed logo

“Dementia includes a variety of neurodegenerative diseases that affect and target the brain’s fundamental cognitive functions. It is undoubtedly one of the diseases that affects people globally. The ameliorating the disease is still not known; the symptoms, however, can be prevented to an extent. Dementia encompasses Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Lewy body dementia, mixed dementia, and various other diseases.

The aggregation of β-amyloid protein plaques and the formation of neurofibrillary tangles have been concluded as the foremost cause for the onset of the disease. As the cases climb, new neuroprotective methods are being developed in the form of new drug delivery systems that provide targeted delivery.

Herbal drugs like Ashwagandha, Brahmi, and Cannabis have shown satisfactory results by not only treating the symptoms but have also been shown to reduce and ameliorate the formation of amyloid plaque formation.

This article explores the intricate possibilities of drug delivery and the absolute use of herbal drugs to target neurodegenerative diseases. The various possibilities of nanotechnology currently available with new emerging techniques are also discussed.”

https://pubmed.ncbi.nlm.nih.gov/40268841/

https://link.springer.com/article/10.1007/s13346-025-01863-3

The role of tetrahydrocannabivarin (THCV) in metabolic disorders: A promising cannabinoid for diabetes and weight management

pubmed logo

“Disorders of the metabolism, including obesity and type 2 diabetes, represent significant global health challenges due to their rising prevalence and associated complications. Despite existing therapeutic strategies, including lifestyle interventions, pharmacological treatments, and surgical options, limitations such as poor adherence, side effects, and accessibility issues call attention to the need for novel solutions.

Tetrahydrocannabivarin (THCV), a non-psychoactive cannabinoid derived from Cannabis sativa, has emerged as a promising agent to manage metabolic disorders.

Unlike tetrahydrocannabinol (THC), THCV exhibits an antagonistic function on the CB1 receptor and a partial agonist function on the CB2 receptor, thus enabling appetite suppression, enhanced glucose regulation, and increased energy expenditure.

Preclinical studies demonstrated that THCV improves insulin sensitivity, promotes glucose uptake, and restores insulin signaling in metabolic tissues. Additionally, THCV reduces lipid accumulation and improves the mitochondrial activity in adipocytes and hepatocytes, shown through both cell-based and animal research. Animal models further revealed THCV’s potential to suppress appetite, prevent hepatosteatosis, and improve metabolic homeostasis.

Preliminary human trials support these findings, thereby showing that THCV may modulate appetite and glycemic control, though larger-scale studies are necessary to confirm its clinical efficacy and safety. THCV’s unique pharmacological profile positions it as a possible therapeutic candidate to address the multifaceted challenges of obesity and diabetes. Continued research should concentrate on optimizing formulations, undertaking well-designed clinical studies, and addressing regulatory hurdles to unlock its full potential”

https://pubmed.ncbi.nlm.nih.gov/40270953/

https://www.aimspress.com/article/doi/10.3934/Neuroscience.2025003

Cannabinoids in neuropathic pain treatment: pharmacological insights and clinical outcomes from recent trials

pubmed logo

“Neuropathic pain, a complex and often devastating condition, poses significant challenges for its effective management. Despite promising research on various cannabis formulations and delivery methods for neuropathic pain, significant gaps remain in our knowledge.

While inhaled cannabis shows analgesic effects and alternative delivery methods may improve bioavailability, oral formulations have yielded mixed results, often limited by small sample sizes and placebo effects. Therefore, further research is essential to optimize cannabis formulations, identify responder profiles to tailor treatments effectively, and, most critically, confirm the long-term safety and efficacy of cannabis-based therapies in managing NP.

This review article aims to provide a comprehensive analysis of the therapeutic potential of cannabis-based medicines, with a particular focus on cannabinoids. This review, though not systematic, examines 11 clinical studies, specifically Randomised Clinical Trials) published from 2014 to 2024, highlighting the efficacy of numerous cannabis formulations, in alleviating neuropathic pain.

Key findings show that cannabinoids can reduce pain perception, improve patient quality of life, and mitigate other symptoms associated with neuropathic pain.

The synergistic effects of tetrahydrocannabinol and cannabidiol are discussed, emphasizing their ability to enhance analgesic effects, while potentially reducing the psychoactive side effects of tetrahydrocannabinol.

This review emphasizes the importance of the personalized approach to improve therapeutic outcomes. Limitations of the existing research focusing on cannabis for neuropathic pain are limited by heterogeneity, lack of standardization, small sample sizes, and reliance on subjective outcomes, impacting the reliability and generalizability of findings. However, this exhaustive review aims to inform clinicians and researchers about the evolving role of cannabis in contemporary pain management strategies, illustrating the diverse pharmacological profiles of cannabinoids and their potential as adjunct therapies for neuropathic pain management.”

https://pubmed.ncbi.nlm.nih.gov/40261351/

https://link.springer.com/article/10.1007/s00210-025-04134-7

UK medical cannabis registry: an updated clinical outcomes analysis of patients with post-traumatic stress disorder

pubmed logo

“Background: Cannabis-based medicinal products (CBMPs) are a potential treatment for post-traumatic stress disorder (PTSD), but their long-term efficacy and safety need further investigation. This study assessed the changes in health-related quality of life (HRQoL) and adverse events in PTSD patients prescribed CBMPs.

Research design and methods: This observational cohort study included PTSD patients enrolled on the UK Medical Cannabis Registry for 18 months or longer. Changes in PTSD-specific symptoms (IES-R), anxiety (GAD-7), sleep quality (SQS), and general HRQoL (EQ-5D-5 L) were assessed at 1, 3, 6, 12, and 18 months.

Results: In 269 patients, significant improvements in PTSD symptoms, anxiety, sleep quality, and HRQoL were observed at all follow-up points (p < 0.001). On multivariate logistic regression, male gender (OR = 0.51; 95% CI:0.28-0.94; p = 0.034) was associated with a reduced chance of reporting improvements in IES-R. Adverse events were reported by 70 (26.02%) patients, with insomnia (n = 42, 15.61%) and fatigue (n = 40, 14.87%) being the most common.

Conclusions: CBMPs were associated with improvements in PTSD symptoms, anxiety, sleep, and HRQoL at up to 18 months. Although the study’s observational nature limits causal conclusions, these findings support further assessment of medical cannabis.”

https://pubmed.ncbi.nlm.nih.gov/40235073/

“Cannabis-based medicinal products (CBMPs) have emerged as novel treatments for PTSD. This analysis suggests that initiation of CBMP therapy for up to 18 months is associated with improvements in PTSD-specific, HRQoL, anxiety, and sleep symptoms in PTSD patients. Moreover, CBMPs are largely well tolerated across this short-term follow-up.”

https://www.tandfonline.com/doi/full/10.1080/14737175.2025.2490539#abstract

Cannabinoid Receptors Reduced Early Brain Damage by Regulating NOX-2 and the NLRP3 Inflammasome in an Animal Model of Intracerebral Hemorrhage

pubmed logo

“Background: Intracerebral hemorrhage (ICH) is a leading cause of death and disability worldwide. Following the initial mechanical injury caused by hematoma expansion, a secondary injury occurs, characterized by the production of reactive oxygen species (ROS) generated by NOX-2 and neuroinflammation, which is exacerbated by the upregulation of the NLRP3 inflammasome. These conditions collectively aggravate brain damage.

The endocannabinoid system (ECS), through the activation of the cannabinoid receptors, has demonstrated neuroprotective properties in various models of brain injury. However, the role of the ECS during ICH remains poorly understood, particularly regarding the action of the CB1 receptor in the activation of NOX-2 and the inflammasome. The present study investigates the neuroprotective effects of the cannabinoid receptor agonist WIN55,212-2 in an ICH animal model, specifically examining the roles of NLRP3 and NOX-2.

Methods: Male C57BL/6 mice were subjected to ICH through an intracerebral injection of collagenase, followed by intraperitoneal administration of WIN55,212-2 and/or MCC950, a selective NLRP3 inhibitor. Various outcome measures were employed, including assessments of motor activity, hematoma volume, brain water content, and blood-brain barrier (BBB) permeability, which was evaluated using Evans blue assay. Additionally, the activity of NOX and the protein levels of crucial markers such as CB1, gp91phox, NLRP3, AQP4, and caspase-1 were measured via western blot analysis.

Result: The findings demonstrate that ICH induced a significant brain lesion characterized by hematoma formation, edema, BBB disruption, and subsequent motor impairments in the affected mice. Notably, these detrimental effects were markedly reduced in animals treated with WIN55,212-2. The study also revealed an activation of both NOX-2 and NLRP3 in response to ICH, which was reduced by cannabinoid receptor activation. Furthermore, the pharmacological inhibition of NLRP3 using MCC950 also led to a reduction in hematoma size, edema, and motor impairment secondary to ICH.

Conclusions: These results support a neuroprotective role of the cannabinoid receptor activation during ICH and suggest the involvement of NOX-2 and NLRP3.”

https://pubmed.ncbi.nlm.nih.gov/40245261/

Utilizing ADMET Analysis and Molecular Docking to Elucidate the Neuroprotective Mechanisms of a Cannabis-Containing Herbal Remedy (Suk-Saiyasna) in Inhibiting Acetylcholinesterase

pubmed logo

“Alzheimer’s disease is characterized by the degeneration of cholinergic neurons, which is primarily driven by the acetylcholinesterase (AChE) enzyme and oxidative stress.

This study investigated the therapeutic potential of the cannabis-containing herbal remedy Suk-Saiyasna in alleviating amyloid β42 (Aβ42)-induced cytotoxicity in SH-SY5Y cells.

The DPPH radical-scavenging activity and inhibitory effects on AChE were evaluated in vitro. The AChE inhibitory potential of 167 ligands, including cannabinoids, flavonoids, terpenoids, and alkaloids derived from Suk-Saiyasna, was assessed using ADMET analysis and molecular docking techniques.

The results demonstrated that the Suk-Saiyasna extract exhibited a DPPH radical scavenging effect with an IC50 value of 27.40 ± 1.15 µg/mL and notable AChE inhibitory activity with an IC50 of 1.25 ± 0.35 mg/mL. Importantly, at a concentration of 1 µg/mL, the extract significantly protected cells from Aβ42-induced stress compared to controls.

Docking studies revealed that delta-9-tetrahydrocannabinol (Δ9-THC), mesuaferrone B, piperine, β-sitosterol, and chlorogenic acid exhibited substantial binding affinities to AChE, surpassing reference drugs like galantamine and rivastigmine. Furthermore, in silico ADMET predictions indicated that Δ9-THC and piperine possessed favorable pharmacokinetic profiles, including solubility, absorption, and blood-brain barrier permeability, with no neurotoxicity or carcinogenicity associated with Δ9-THC.”

https://pubmed.ncbi.nlm.nih.gov/40243991/

“This study highlighted the potential of the Suk-Saiyasna herbal remedy in developing novel neuroprotective compounds for Alzheimer’s disease. The extracts of Suk-Saiyasna demonstrated significant antioxidant and acetylcholinesterase inhibitory activities, indicating their therapeutic applications. Molecular docking studies identified various active constituents with promising binding affinities, reinforcing their potential as acetylcholinesterase inhibitors.

Additionally, ADME predictions indicated favorable properties for Δ9-THC and piperine, underscoring their ability to cross the blood–brain barrier, which is crucial for neuroprotective effects. The safety evaluation of the extracts revealed moderate toxicity for piperine and Δ9-THC, while mesuaferrone B and chlorogenic acid displayed a safer profile. The inactivity of these compounds regarding hepatotoxicity and neurotoxicity further supported their potential use in therapeutic settings. However, concerns regarding carcinogenicity associated with piperine, donepezil, and galantamine necessitate rigorous safety assessments.

Overall, the findings from this research provide a foundation for the future exploration of Suk-Saiyasna as a promising source of natural antioxidants and neuroprotective agents.”

https://www.mdpi.com/1422-0067/26/7/3189

Cannabinoids as Multitarget Drugs for the Treatment of Autoimmunity in Glaucoma

pubmed logo

“Diseases of multifactorial origin like neurodegenerative and autoimmune diseases require a multitargeted approach.

The discovery of the role of autoimmunity in glaucoma and retinal ganglionic cell (RGC) death has led to a paradigm shift in our understanding of the etiopathology of glaucoma. Glaucoma can cause irreversible vision loss that affects up to an estimated 3% of the population over 40 years of age. The current pharmacotherapy primarily aims to manage only intraocular pressure (IOP), a modifiable risk factor in the glaucomatous neurodegeneration of RGCs. However, neurodegeneration continues to happen in normotensive patients (where the IOP is below a reference value), and the silent nature of the disease can cause significant visual impairment and take a massive toll on the healthcare system.

Cannabinoids, although known to reduce IOP since the 1970s, have received renewed interest due to their neuroprotective, anti-inflammatory, and immunosuppressive effects on autoimmunity. Additionally, the role of the gut-retina axis and abnormal Wnt signaling in glaucoma makes cannabinoids even more relevant because of their action on multiple targets, all converging in the pathogenesis of glaucomatous neurodegeneration. Cannabinoids also cause epigenetic changes in immune cells associated with autoimmunity.

In this Review, we are proposing the use of cannabinoids as a multitargeted approach for treating autoimmunity associated with glaucomatous neurodegeneration, especially for the silent nature of glaucomatous neurodegeneration in normotensive patients.”

https://pubmed.ncbi.nlm.nih.gov/40242585/

https://pubs.acs.org/doi/10.1021/acsptsci.4c00583

Meta-analysis of medical cannabis outcomes and associations with cancer

“Background: Growing bodies of evidence suggest that cannabis may play a significant role in both oncological palliative care and as a direct anticarcinogenic agent, but classification as a Schedule I substance has complicated research into its therapeutic potential, leaving the state of research scattered and heterogeneous. This meta-analysis was conducted to determine the scientific consensus on medical cannabis’ viability in cancer treatment.

Objective: The aim of this meta-analysis was to systematically assess the existing literature on medical cannabis, focusing on its therapeutic potential, safety profiles, and role in cancer treatment.

Methods: This study synthesized data from over 10,000 peer-reviewed research papers, encompassing 39,767 data points related to cannabis and various health outcomes. Using sentiment analysis, the study identified correlations between cannabis use and supported, not supported, and unclear sentiments across multiple categories, including cancer dynamics, health metrics, and cancer treatments. A sensitivity analysis was conducted to validate the reliability of the findings.

Results: The meta-analysis revealed a significant consensus supporting the use of medical cannabis in the categories of health metrics, cancer treatments, and cancer dynamics. The aggregated correlation strength of cannabis across all cancer topics indicates that support for medical cannabis is 31.38× stronger than opposition to it. The analysis highlighted the anti-inflammatory potential of cannabis, its use in managing cancer-related symptoms such as pain, nausea, and appetite loss, and explored the consensus on its use as an anticarcinogenic agent.

Discussion: The findings indicate a strong and growing consensus within the scientific community regarding the therapeutic benefits of cannabis, particularly in the context of cancer. The consistent correlation strengths for cannabis as both a palliative adjunct and a potential anticarcinogenic agent redefine the consensus around cannabis as a medical intervention.

Conclusion: The consistency of positive sentiments across a wide range of studies suggests that cannabis should be re-evaluated within the medical community as a treatment option. The findings have implications for public health research, clinical practice, and discussions surrounding the legal status of medical cannabis. These results suggest a need for further research to explore the full therapeutic potential of cannabis and address knowledge gaps.”

“The data presented here indicate that cannabis has a well-established role in managing symptoms related to cancer and may have both direct and indirect anticancer properties, which challenges the notion that it has no accepted medical use.”

https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1490621/full

Antibacterial properties of silver and gold nanoparticles synthesized using Cannabis sativa waste extract against Pseudomonas aeruginosa

pubmed logo

“Aims: The study aimed to explore the sustainable synthesis of metal nanoparticles using a green and eco-friendly resource. Specifically, it investigated the utilization of Cannabis sativa waste extract for the production of gold and silver nanoparticles, focusing on their antimicrobial activity against gram-negative bacteria, particularly Pseudomonas aeruginosa strains, which are significant in nosocomial infections.

Methods: Cannabis sativa waste extract was employed to synthesize gold and silver nanoparticles through a green synthesis approach. The produced nanoparticles were characterized using transmission electron microscopy (TEM), atomic absorption spectrometry (AAS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial efficacy of the synthesized nanoparticles was assessed through their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimal biofilm inhibitory concentration (MBIC) against Pseudomonas aeruginosa, utilizing a microcultivation device, solid medium cultivation, and a metabolic activity assay in a polystyrene microtiter plate, respectively.

Results: The TEM analysis revealed the size and morphology of the nanoparticles, while AAS confirmed their concentration. XRD provided insights into the crystalline structure, and FTIR analysis identified the molecular structure of the nanoparticle’s stabilizing layer. The synthesized nanoparticles showed significant antimicrobial activity against Pseudomonas aeruginosa, with determined MIC, MBC, and MBIC values of produced silver nanoparticles, showcasing their potential as effective antimicrobial agents.

Conclusions: This study successfully demonstrated the synthesis of silver and gold nanoparticles using Cannabis sativa waste extract and highlighted their potent antimicrobial properties. It underscores the potential of utilizing plant waste extracts in sustainable nanomaterial synthesis and contributes to the fields of green nanotechnology and waste valorization within the circular economy. The findings also offer valuable insights into developing natural waste source-based antimicrobial agents.”

https://pubmed.ncbi.nlm.nih.gov/40221737/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-025-00272-0

Effect of cannabinoids on the efficacy and side effects of anticancer therapeutic strategies – Current status of preclinical and clinical research

pubmed logo

“Cannabinoids have attracted increasing attention in cancer research in recent decades. A major focus of current preclinical and clinical studies is on the interactions and potential risks when combined with chemotherapeutic agents, targeted therapies and other anticancer strategies.

Given the extensive preclinical data on additive, synergistic and, in some cases, antagonistic tumor cell killing effects of chemotherapeutic agents and cannabinoids when co-administered, a critical analysis of these data seems essential. The available data mainly relate to combination treatments for glioblastoma, hematological malignancies and breast cancer, but also for other cancer types.

Such an analysis also appears necessary because cannabinoids are used as an option to treat nausea and vomiting caused by chemotherapy, as well as tumor-related pain, and cancer patients sometimes take cannabinoids without a medical prescription. In addition, numerous recent preclinical studies also suggest cannabinoid-mediated relief of other chemotherapy-related side effects such as peripheral neuropathy, nephrotoxicity, cardiotoxicity, cystitis, bladder complications and mucositis.

To summarize, the data available to date raise the prospect that cannabinoids may increase the efficacy of chemotherapeutic agents while reducing their side effects. However, studies on interactions are mostly limited to cytotoxicity analyses. An equally thorough investigation of the effects of such combinations on the immune system and on the tumorigenic levels of angiogenesis, invasion and metastasis is still pending. On this basis, a comprehensive understanding for the evaluation of a targeted additional treatment of various cancers with cannabinoids could be established.”

https://pubmed.ncbi.nlm.nih.gov/40221102/

“The anticancer effect of various phytocannabinoids, including Δ9-tetrahydrocannabinol (THC), was first demonstrated in animal experiments in 1975 (Munson, Harris, Friedman, Dewey, & Carchman, 1975). After the discovery of the endocannabinoid system in the early 1990s, these effects were confirmed in numerous preclinical studies in a variety of different neoplastic entities. Based on these findings and studies demonstrating the anticancer effects of cannabinoids on various hallmarks of tumorigenesis, cannabinoids have increasingly become the focus of scientific discussions as systemic tumor therapies in recent years (for an overview, see Ramer & Hinz, 2015; Hinz & Ramer, 2019). From a preclinical point of view, the systemic antitumor effects of cannabinoids thus represent the basis for combining cannabinoids with chemotherapies, which can increase the effectiveness of chemotherapeutic agents and overcome resistance.”

https://www.sciencedirect.com/science/article/abs/pii/S0163725825000634?via%3Dihub