Lack of interactions between prenatal immune activation and Δ9-tetrahydrocannabinol exposure during adolescence in behaviours relevant to symptom dimensions of schizophrenia in rats

pubmed logo

“The causality in the association between cannabis use and the risk of developing schizophrenia has been the subject of intense debate in the last few years. The development of animal models recapitulating several aspects of the disease is crucial for shedding light on this issue. Maternal infections are a known risk for schizophrenia. Here, we used the maternal immune activation (MIA) model combined with THC exposure during adolescence to examine several behaviours in rats (working memory in the Y maze, sociability in the three-chamber test, sucrose preference as a measure, prepulse inhibition and formation of incidental associations) that are similar to the different symptom clusters of the disease. To this end, we administered LPS to pregnant dams and when the offspring reached adolescence, we exposed them to a mild dose of THC to examine their behaviour in adulthood. We also studied several parameters in the dams, including locomotor activity in the open field, elevated plus maze performance and their response to LPS, that could predict symptom severity of the offspring, but found no evidence of any predictive value of these variables. In the adult offspring, MIA was associated with impaired working memory and sensorimotor gating, but surprisingly, it increased sociability, social novelty and sucrose preference. THC, on its own, impaired sociability and social memory, but there were no interactions between MIA and THC exposure. These results suggest that, in this model, THC during adolescence does not trigger or aggravate symptoms related to schizophrenia in rats.”

https://pubmed.ncbi.nlm.nih.gov/37918558/

https://www.sciencedirect.com/science/article/abs/pii/S0278584623001756?via%3Dihub

Successful Treatment of a Fibromyalgia Patient Using a Homeopathic Preparation of Cannabis sativa

pubmed logo

“Background: Homeopathy has been used in observational and controlled studies to treat patients with fibromyalgia (FM), but none has previously used the remedy Cannabis sativa.

Case history: A 51-year-old female patient presenting with diffuse pain and sleep disorder was diagnosed with FM using the relevant American College of Rheumatology criteria. She reported having 18 tender points, a pain score (visual analog scale, VAS) of 9.0, and a well-being VAS of 5.0. She was prescribed Cannabis sativa 6 cH, five drops sublingually thrice a day.

Results: After 2 months, she returned asymptomatic, with 0 tender points, pain VAS of 0, and well-being VAS of 9.0. The Modified Naranjo Criteria for Homeopathy score was equal to +9, suggesting the clinical outcome was causally attributable to the medicine prescribed.

Conclusion: This case study reveals the positive role of homeopathic treatment in FM. Studies using a randomized controlled design, including pragmatic trials to determine treatment effectiveness in real-world clinical practice, are indicated in this field.”

https://pubmed.ncbi.nlm.nih.gov/37903591/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0043-1775815

Medical Cannabis Alleviates Chronic Neuropathic Pain Effectively and Sustainably without Severe Adverse Effect: A Retrospective Study on 99 Cases

pubmed logo

“Introduction: Medical cannabis may provide a treatment option for chronic neuropathic pain. However, empirical disease-specific data are scarce.

Methods: This is a retrospective observational study including 99 patients with chronic neuropathic pain. These patients received medical cannabis by means of inhaling dried flowers with tetrahydrocannabinol content of <12-22% at a maximal daily dose of 0.15-1 g. Up to six follow-ups were carried out at intervals of 4-6 weeks. Pain severity, sleep disturbance, general improvement, side effects, and therapy tolerance at the follow-up consultations were assessed in interviews and compared with the baseline data using non-parametric Wilcoxon signed-rank test.

Results: Within 6 weeks on the therapy, median of the pain scores decreased significantly from 7.5 to 4.0 (p < 0.001). The proportion of patients with severe pain (score >6) decreased from 96% to 16% (p < 0.001). Sleep disturbance was significantly improved with the median of the scores decreased from 8.0 to 2.0 (p < 0.001). These improvements were sustained over a period of up to 6 months. There were no severe adverse events reported. Mild side effects reported were dryness in mucous tissue (5.4%), fatigue (4.8%), and increased appetite (2.7%). Therapy tolerance was reported in 91% of the interviews.

Conclusion: Medical cannabis is safe and highly effective for treating neuropathic pain and concomitant sleep disturbance.”

https://pubmed.ncbi.nlm.nih.gov/37900896/

https://karger.com/mca/article/6/1/89/860557/Medical-Cannabis-Alleviates-Chronic-Neuropathic

In Vitro Antiproliferative Effect of Cannabis Extract PHEC-66 on Melanoma Cell Lines

pubmed logo

“Melanoma, an aggressive form of skin cancer, can be fatal if not diagnosed and treated early. Melanoma is widely recognized to resist advanced cancer treatments, including immune checkpoint inhibitors, kinase inhibitors, and chemotherapy. Numerous studies have shown that various Cannabis sativa extracts exhibit potential anticancer effects against different types of tumours both in vitro and in vivo. This study is the first to report that PHEC-66, a Cannabis sativa extract, displays antiproliferative effects against MM418-C1, MM329 and MM96L melanoma cells. Although these findings suggest that PHEC-66 has promising potential as a pharmacotherapeutic agent for melanoma treatment, further research is necessary to evaluate its safety, efficacy, and clinical applications.”

https://pubmed.ncbi.nlm.nih.gov/37887294/

“In conclusion, the results of this study demonstrate that PHEC-66 extract derived from Cannabis sativa exerts a significant cytotoxic effect on MM418-C1, MM329, and MM96L melanoma cell lines while having a lesser effect on human keratinocytes (HaCaT), human epidermal melanocytes (HEM), and normal human dermal fibroblasts (NHDF). Although the mechanism of PHEC-66’s anti-melanoma activity remains unknown, this study suggests it may induce apoptotic and necrotic cell death pathways. Further research is necessary to fully comprehend the underlying mechanisms of PHEC-66’s actions and assess its potential as a natural source of anticancer compounds.”

https://www.mdpi.com/2073-4409/12/20/2450

EXPLORING THE RELATIONSHIP BETWEEN MARIJUANA SMOKING AND COVID-19 OUTCOMES

“PURPOSE: Marijuana use is becoming increasingly prevalent worldwide, yet the full spectrum of its effects largely remains unknown. Although cannabinoids have immunomodulatory properties, there remains a significant gap in our understanding of the potential impact of marijuana use on COVID-19 outcomes. The purpose of the study is to compare the outcomes of COVID-19 infection on individuals who use marijuana and those who do not.

METHODS: National Inpatient Sample Database was used to sample individuals admitted with the diagnosis of COVID-19. Patients were divided into two groups based on marijuana use. Baseline demographics and comorbidities were collected using ICD-10 codes. Patients with missing data or age under 18 were excluded. Greedy propensity matching using R was performed to match marijuana users to non-users 1:1 on age, race, gender, and 17 other comorbidities including chronic lung disease. Univariate analysis pre- and post-match were performed. Binary logistic regression was performed post-match. A p-value of <0.05 was considered statistically significant.

RESULTS: Out of 322,214 patients included in the study, 2,603 were marijuana users. Marijuana users were younger and had higher prevalence of tobacco use. However, other comorbidities including obstructive sleep apnea, obesity, hypertension, and diabetes mellitus were more prevalent in marijuana non-users. On univariate analysis, marijuana users had significantly lower rates of intubation (6.8% vs 12%), acute respiratory distress syndrome (ARDS) (2.1% vs 6%), acute respiratory failure (25% vs 52.9%) and severe sepsis with multiorgan failure (5.8% vs 12%). They also had lower in-hospital cardiac arrest (1.2% vs 2.7%) and mortality (2.9% vs 13.5%). After 1:1 matching, marijuana users had lower rates of intubation (OR: 0.64 [0.51-0.81]; p<0.01), ARDS (OR: 0.39 [0.26-0.58]; p<0.01), acute respiratory failure (OR: 0.53 [0.47-0.61]; p<0.01), severe sepsis with multiorgan failure (OR: 0.68 [0.52-0.89]; p<0.01) and lower mortality (OR: 0.48 [0.33-0.69]; p<0.01)

CONCLUSIONS: Marijuana smokers had better outcomes and mortality compared to non-users. The beneficial effect of marijuana use may be attributed to its potential to inhibit viral entry into cells and prevent the release of proinflammatory cytokines, thus mitigating cytokine release syndrome.

CLINICAL IMPLICATIONS: The significant decrease in mortality and complications warrants further investigation of the association between marijuana use and COVID-19. Our study highlights a topic of future research for larger trials especially considering the widespread use of marijuana.”

https://journal.chestnet.org/article/S0012-3692(23)02201-8/fulltext

“Study Finds Cannabis Users Had Better Covid-19 Outcomes”

https://www.forbes.com/sites/ajherrington/2023/10/13/study-finds-cannabis-users-had-better-covid-19-outcomes/?sh=67f274281eb1

Cannabinoids and endocannabinoids as therapeutics for nervous system disorders: preclinical models and clinical studies

pubmed logo

“Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body. They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases.

Some of these include central nervous system (CNS) diseases and dysfunctions such as forms of epilepsy, multiple sclerosis, Parkinson’s disease, pain and neuropsychiatric disorders. In addition, the endogenously produced cannabinoid lipids, endocannabinoids, are critical for normal CNS function, and if controlled or modified, may represent an additional therapeutic avenue for CNS diseases. This review discusses in vitro cellular, ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies. In addition, the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases.

Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/37843213/

https://journals.lww.com/nrronline/fulltext/2024/04000/cannabinoids_and_endocannabinoids_as_therapeutics.22.aspx

Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases

pubmed logo

“Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.”

https://pubmed.ncbi.nlm.nih.gov/37834122/

“Taken together, the future of cannabis and cannabinoids research for gastrointestinal disorders involves a comprehensive understanding of their mechanisms of action, multi-centred rigorous clinical trials, personalized medicine approaches, and continued exploration of formulation development and safety considerations. These efforts have the potential to yield novel therapeutic options and improve the quality of life for patients with gastrointestinal disorders.”

https://www.mdpi.com/1422-0067/24/19/14677

Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study

pubmed logo

“Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease.

Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs.

Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein.

We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/37834076/

https://www.mdpi.com/1422-0067/24/19/14628

Cell death induction and intracellular vesicle formation in human colorectal cancer cells treated with Δ9-Tetrahydrocannabinol

pubmed logo

“Background: Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application.

Objective: This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells.

Methods: We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor.

Results: The MTT assay showed that treatment with 40 μM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected.

Conclusion: In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/37837516/

https://link.springer.com/article/10.1007/s13258-023-01466-7

Cannabinol inhibits cell growth and triggers cell cycle arrest and apoptosis in cancer cells

Biocatalysis and Agricultural Biotechnology

“Cancer is one of the most difficult diseases to treat and cure.”

“Cannabinol (CBN), one of the active ingredients from the cannabis plant, is the breakdown molecule of Δ9-tetrahydrocannabinol (Δ9-THC) which is the most abundant psychoactive cannabinoid.”

“Cannabinol (CBN) is a weak-psychoactive cannabinoid and has been shown to exert several bio-logical activities. At the same time, not much is known about the anti-cancer activities of CBN. In this report, we characterized the anti-tumor effects of CBN on the glioma A172, liver cancer HepG2 and breast cancer HCC1806 cell lines.

We found that CBN reduces the proliferation of the analyzed cancer cells and modulates the level of cannabinoid receptors, including GPR18, CB2 and GPR55. Furthermore, CBN inhibits the ERK1/2 pathway in A172 and HepG2 cells, while suppressing the AKT pathway in HCC1086 cells. Moreover, CBN may cause apoptosis through downregulation of p21 and p27 as well as a cell cycle arrest at G1 or S-phase via decreasing the CDK1, CDK2, and cyclin E1 levels.

Taken together, these results offer new insights into the anti-cancer properties of CBN.”

“CBN, one of the weak-psychoactive cannabinoids, have demonstrated various medicinal properties, including anti-inflammatory, antibacterial, analgesic and even anti-tumor.”

“In this study, we revealed the antitumor activity of CBN in three different tumor cell lines, glioma A172, liver cancer HepG2 and breast cancer HCC1806 cell lines. We report that cannabinol inhibits proliferation of several cancer cell lines by regulation of the signaling pathways involving ERK and AKT as well as by altering the expression of cannabinoid receptors. Moreover, we also found that CBN induces apoptosis and cell cycle arrest and partially uncovered underlying molecular mechanisms. Our findings provide novel information about the anti-cancer properties of CBN and justify further research to investigate the role of CBN as cancer therapeutic.”

https://www.sciencedirect.com/science/article/abs/pii/S1878818123000282