Therapeutic Molecular Insights into the Active Engagement of Cannabinoids in the Therapy of Parkinson’s Disease: A Novel and Futuristic Approach

SpringerLink

“Parkinson’s disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death.

Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain’s dopaminergic systems, a condition for which there is now no treatment.

The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson’s disease, making it immensely useful in the treatment of such a debilitating illness.”

https://pubmed.ncbi.nlm.nih.gov/36567416/

https://link.springer.com/article/10.1007/s12640-022-00619-y

Dysmenorrhoea: Can Medicinal Cannabis Bring New Hope for a Collective Group of Women Suffering in Pain, Globally?

ijms-logo

“Dysmenorrhoea effects up to 90% of women of reproductive age, with medical management options including over-the-counter analgesia or hormonal contraception. There has been a recent surge in medicinal cannabis research and its analgesic properties.

This paper aims to critically investigate the current research of medicinal cannabis for pain relief and to discuss its potential application to treat dysmenorrhoea.

Relevant keywords, including medicinal cannabis, pain, cannabinoids, tetrahydrocannabinol, dysmenorrhoea, and clinical trial, have been searched in the PubMed, EMBASE, MEDLINE, Google Scholar, Cochrane Library (Wiley) databases and a clinical trial website (clinicaltrials.gov). To identify the relevant studies for this paper, 84 papers were reviewed and 20 were discarded as irrelevant.

This review critically evaluated cannabis-based medicines and their mechanism and properties in relation to pain relief. It also tabulated all clinical trials carried out investigating medicinal cannabis for pain relief and highlighted the side effects. In addition, the safety and toxicology of medicinal cannabis and barriers to use are highlighted. Two-thirds of the clinical trials summarised confirmed positive analgesic outcomes, with major side effects reported as nausea, drowsiness, and dry mouth.

In conclusion, medicinal cannabis has promising applications in the management of dysmenorrhoea. The global medical cannabis market size was valued at USD 11.0 billion in 2021 and is expected to expand at a compound annual growth rate (CAGR) of 21.06% from 2022 to 2030. This will encourage academic as well as the pharmaceutical and medical device industries to study the application of medical cannabis in unmet clinical disorders.”

https://pubmed.ncbi.nlm.nih.gov/36555842/

“Dysmenorrhoea is a medical term used to describe painful menstruation. Cannabis-based products are entering both healthcare and commercial markets with a surge in availability. With further research, cannabis-based medicines may become the norm in the management of severe or treatment-resistant dysmenorrhoea.”

https://www.mdpi.com/1422-0067/23/24/16201

Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases

cells-logo

“The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin’s immune response.

In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.”

https://pubmed.ncbi.nlm.nih.gov/36552866/

“Based on the current publications, it can be summarised that cannabinoid compounds have great potential in the treatment of skin diseases, both as topical applications and as systemic medications.”

https://www.mdpi.com/2073-4409/11/24/4102

Sustained cannabis use does not predispose clinical hypertension: Findings from a national survey

“Cannabis is among the most used recreational and medicinal drugs in the United States. The effects of chronic use on hypertension remain poorly understood.

Our study retrospectively evaluated data collected by the National Health and Nutrition Examination Survey from 2017 to 2018. Cannabis use was measured with five metrics: (1) sustained use at any point in the past, (2) sustained use within the past year, (3) frequency of use, (4) age of first cannabis use, and (5) current use. Hypertension status was determined by individuals reporting having been diagnosed in the past. Multivariable logistic regressions were performed, controlling for age, race, and gender. A total of 4565 respondents were identified, of which 867 (19.0%) reported sustained cannabis use in the past.

Participants who reported past sustained cannabis use did not have statistically different odds of having hypertension (OR: 1.12; 95% CI: .66-1.91; p = .6). Moderate (OR: 1.08; 95% CI: .36-3.25; p = .8) and highly-frequent users (OR: 1.30; 95% CI: .56-3.03; p = .4) did not have different odds of having hypertension than infrequent users. No relationship between the age of first cannabis use and hypertension was observed. The recency of sustained cannabis use was not associated with hypertension status. Current cannabis users had similar odds of hypertension as past users (OR: 1.03; 95% CI: .59-1.79; p = .9).

The findings of this study indicate that neither past nor current cannabis use is associated with clinical hypertension.”

https://pubmed.ncbi.nlm.nih.gov/36545898/

“The findings of this study indicate that neither past nor current cannabis use are associated with the likelihood of having clinical hypertension. Among cannabis users, frequency of use was not associated with hypertension. Similarly, the age of first cannabis use was not associated with hypertension status.”

https://onlinelibrary.wiley.com/doi/10.1111/jch.14623

Inhibiting Human and Leishmania Arginases Using Cannabis sativa as a Potential Therapy for Cutaneous Leishmaniasis: A Molecular Docking Study

tropicalmed-logo

“Cutaneous leishmaniasis (CL), a vector-borne parasitic disease caused by the Leishmania protozoan, is a serious public health problem in Morocco. The treatment of this disease is still based on pentavalent antimonials as the primary therapy, but these have associated side effects. Thus, the development of effective, risk-free alternative therapeutics based on natural compounds against leishmaniasis is urgent. Arginase, the key enzyme in the polyamine biosynthetic pathway, plays a critical role in leishmaniasis outcome and has emerged as a potential therapeutic target.

The objective of this study was to test Cannabis sativa‘s phytochemical components (cannabinoids and terpenoids) through molecular docking against Leishmania and human arginase enzymes.

Our results showed that delta-9-tetrahydrocannabinol (THC) possessed the best binding energies of -6.02 and -6.35 kcal/mol with active sites of Leishmania and human arginases, respectively. Delta-9-THC interacted with Leishmania arginase through various amino acids including His139 and His 154 and linked to human arginase via His 126. In addition to delta-9-THC, caryophyllene oxide and cannabidiol (CBD) also showed a good inhibition of Leishmania and human arginases, respectively.

Overall, the studied components were found to inhibit both arginases active sites via hydrogen bonds and hydrophobic interactions. These components may serve as therapeutic agents or in co-administrated therapy for leishmaniasis.”

https://pubmed.ncbi.nlm.nih.gov/36548655/

“Since CL is still a public health problem in low-income and developing countries, the discovery of an efficient, less toxic, and accessible therapy is a necessity. The present in silico study was the first to investigate C. sativa’s selected constituents as selective inhibitory agents for parasitic as well as host arginases, which play an important role in this parasitic infection pathology. Interestingly, THC showed a great inhibitory potential for both species’ enzymes and will allow a better control of leishmaniasis.”

https://www.mdpi.com/2414-6366/7/12/400

The Utility of Cannabis-Based Medicine in Chronic Pain Management: A Case Report

“Chronic pain is a common diagnosis that patients may face, resulting in increased morbidity and mortality and affecting the overall quality of life.

In addition to established multidisciplinary pain management, medical cannabis may offer an approach to improving pain outcomes and functionality. This case involves a 72-year-old female patient, with chronic neck, lower back, and diffuse arthritic pain due to comorbid osteoarthritis (OA), scleroderma, and scoliosis. Medical cannabis therapy was certified based on the goals of improving pain control and simultaneously reducing the patient’s chronic opioid medication dose.

Using potential opioid alternatives, such as medical cannabis, may prove beneficial to clinicians looking to improve pain management and reduce opioid therapy in patients.”

https://pubmed.ncbi.nlm.nih.gov/36540475/

“This case indicates that cannabinoid therapy may be useful in managing chronic pain and therein reducing its detrimental impact on patients’ overall quality of life. Potential opioid alternatives, such as medical cannabis, are becoming increasingly important in pain management to improve patients’ quality of life. Additionally, this case demonstrates that medical cannabis may prove beneficial in reducing reliance on chronic opioid therapy. Clinicians should be aware of different approaches to treatment that do not include opioids.”

https://www.cureus.com/articles/113524-the-utility-of-cannabis-based-medicine-in-chronic-pain-management-a-case-report

Clinical Outcome Data of Children Treated with Cannabis Based Medicinal Products for Treatment Resistant Epilepsy – Analysis from the UK Medical Cannabis Registry

“Background There is a paucity of high-quality evidence of the efficacy and safety of cannabis-based medicinal products in treatment of treatment-resistant epilepsy (TRE) in children.

Methods A case series of children(<18 years old) with TRE from the UK Medical Cannabis Registry was analysed. Primary outcomes were ≥50% reduction in seizure frequency, changes in the Impact of Paediatric Epilepsy Score(IPES) and incidence of adverse events.

Results Thirty-five patients were included in the analysis. Patients were prescribed during their treatment with the following-CBD isolate oils(n=19), CBD broad-spectrum oils(n=17), and CBD/Δ9-THC combination therapy(n=17). Twenty-three(65.7%) patients achieved a ≥50% reduction in seizure frequency. 94.1%(n=16) of patients treated with CBD and Δ9-THC observed a ≥50% reduction in seizure frequency compared to 31.6%(n=6) and 17.6%(n=3) of patients treated with CBD isolates and broad-spectrum CBD products respectively(p<0.001). Twenty-six(74.3%) adverse events were reported by 16 patients(45.7%). The majority of these were mild(n=12; 34.2%) and moderate(n=10; 28.6%).

Conclusions The results of this study demonstrate a positive signal of improved seizure frequency in children treated with CBMPs for TRE. Moreover, the results suggest that CBMPs are well-tolerated in the short term. The limitations mean causation cannot be determined in this open-label, case series.”

https://pubmed.ncbi.nlm.nih.gov/36539215/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2002-2119

Medicinal cannabis improves sleep in adults with insomnia: a randomised double-blind placebo-controlled crossover study

“Insomnia or difficulty falling and or staying asleep is experienced by up to 30% of the general population.

This randomised crossover double-blind placebo-controlled 6-week trial aimed to assess the tolerability and effectiveness of the Entoura-10:15 medicinal cannabis oil on sleep in adults with insomnia. A total of 29 participants with self-reported clinical insomnia completed the crossover trial. Participants were randomly allocated to receive placebo or active oil containing 10 mg/ml tetrahydrocannabinol (THC) and 15 mg/ml cannabidiol (CBD) over 2-weeks titrated 0.2-1.5 ml/day, followed by a 1-week wash-out period before crossover. Tolerability was assessed by daily diary. Effectiveness was measured by saliva midnight melatonin levels, validated questionnaires, i.e., the Insomnia Severity Index, and the Fitbit activity/sleep wrist tracker.

Entoura-10:15 medicinal cannabis oil was generally well tolerated, and was effective in improving sleep, whereby 60% of participants no longer classified as clinical insomniacs at the end of the 2-week intervention period. Midnight melatonin levels significantly improved in the active group by 30% compared to a 20% decline in the placebo group (p = 0.035). Medicinal cannabis oil improved both time and quality of sleep, in particular light sleep increased by 21 min/night compared to placebo (p = 0.041). The quality of sleep improved overall by up to 80% in the active group (pPhase2 = 0.003), including higher daily functioning (p = 0.032). Observed effects were more pronounced in Phase 2 due to the period effect and loss of blinding.

Entoura-10:15 medicinal cannabis oil was well tolerated and effective in improving sleep in adults with insomnia.”

https://pubmed.ncbi.nlm.nih.gov/36539991/

“In summary, our short-term trial suggests Entoura 10:15 medicinal cannabis oil, containing THC:CBD 10:15 and lesser amounts of other CBs and naturally occurring terpenes, to be well tolerated and effective in significantly improving sleep quality and duration, midnight melatonin levels, quality of life, and mood within 2-weeks in adults with insomnia.”

https://onlinelibrary.wiley.com/doi/10.1111/jsr.13793

Cannabis sativa L. alleviates loperamide-induced constipation by modulating the composition of gut microbiota in mice

Frontiers - Crunchbase Company Profile & Funding

“MaZiRenWan (MZRW) is the most frequently used Traditional Chinese Medicine formula to treat chronic constipation, Cannabis sativa L. is regarded as a monarch drug in MZRW. However, the targets of Cannabis sativa L. that enhance colonic motility and improve constipation symptoms remain unknown.

This study was designed to investigate the laxative effect and underlying mechanism of the water extract of Cannabis sativa L. (WECSL) using a loperamide-induced constipation mouse model.

We found that WECSL treatment significantly improved intestinal motility and water-electrolyte metabolism, decreased inflammatory responses, prevented gut barrier damage, and relieved anxiety and depression in constipated mice. WECSL also structurally remodeled the composition of the gut microbiota and altered the abundance of bacteria related to inflammation, specifically Butyricicoccus and Parasutterella. Moreover, WECSL failed to relieve constipation symptoms following intestinal flora depletion, indicating that WECSL alleviates constipation symptoms depending on the gut microbiota.

Our research provides a basis for WECSL to be further investigated in the treatment of constipation from the perspective of modern medicine.”

https://pubmed.ncbi.nlm.nih.gov/36532754/

“In conclusion, this study demonstrated that WECSL can improve constipation symptoms, reduce anxiety and depression behaviors, and inhibit intestinal inflammation. WECSL also structurally remodeled the composition of the gut microbiota, altering the abundance of bacteria related to inflammation.

Our research provides a basis for WECSL to be further investigated in the treatment of constipation from the perspective of modern medicine. Constipation may be prevented and improved by targeting these possible gut bacteria.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.1033069/full


The use of medical cannabis concomitantly with immune checkpoint inhibitors in non-small cell lung cancer: A sigh of relief?

European Journal of Cancer

“Background: The use of medical cannabis has rapidly increased among cancer patients worldwide. Cannabis is often administered concomitantly with cancer medications, including immune checkpoint inhibitors (ICIs). As the cannabinoid receptors are abundantly expressed and modulate immune cells, it has been hypothesised that cannabis may attenuate the activity of ICIs. We aimed to assess the effect of cannabis on ICIs’ efficiency in patients having non-small cell lung cancer (NSCLC).

Method: The murine model of CT26 tumour-bearing mice treated with an anti-PD-1 antibody and Δ9-tetrahydrocannabinol (THC) was used to evaluate the interaction between THC and ICIs in vivo. Correlation between use of medical cannabis and clinical outcome was evaluated in a cohort of 201 consecutive metastatic NSCLC patients treated with monotherapy pembrolizumab as a first-line treatment.

Results: Median overall survival (OS) of the mice receiving a control vehicle, THC, anti-PD-1 antibody or their combination was 21, 24, 31 and 54 days, respectively (p < 0.05 for the combination treatment compared to a control vehicle), indicating that THC did not reduce the efficacy of anti-PD-1 therapy. Of 201 NSCLC patients treated with first-line monotherapy pembrolizumab for metastatic disease, 102 (50.7%) patients received licence for cannabis within the first month of treatment. Cannabis-treated patients were younger compared to the cannabis naïve patients (median age 68 versus 74, p = 0.003), with female predominance (62, 60.8% versus 34, 34.3%, p = 0.002) and with more prevailing brain metastasis (15.7% versus 5%, p = 0.013). Similar distribution of histology, smoking status, ECOG (Eastern Cooperative Oncology Group) and programmed death-ligand 1 expression was noted between the groups. Liver metastases were marginally significant (19.6% versus 10.1%, p = 0.058). The most common indication for cannabis was pain (71%) followed by loss of appetite (34.3%). Time to tumour progression was similar for cannabis-naive and cannabis-treated patients (6.1 versus 5.6 months, respectively, 95% confidence interval, 0.82 to 1.38, p = 0.386), while OS was numerically higher in the cannabis-naive group (54.9 versus 23.6 months) but did not reach statistical significance (95% confidence interval 0.99 to 2.51, p = 0.08). In multivariate analyses, we did not identify cannabis use as an independent predictor factor for mortality.

Conclusions: Preclinical and clinical data suggest no deleterious effect of cannabis on the activity of pembrolizumab as first-line monotherapy for advanced NSCLC. The differences in OS can most likely be attributed to higher disease burden and more symptomatic disease in the cannabis-treated group. These data provide reassurance regarding the absence of a deleterious effect of cannabis in this clinical setting.”

https://pubmed.ncbi.nlm.nih.gov/36535195/

https://www.ejcancer.com/article/S0959-8049(22)01767-1/fulltext