The impact of cannabinoids on inflammasome signaling in HIV-1 infection

NeuroImmune Pharmacology and Therapeutics

“Human immunodeficiency virus type 1 (HIV-1) is a chronic disease that afflicts over 38 million people worldwide without a known cure. The advent of effective antiretroviral therapies (ART) has significantly decreased the morbidity and mortality associated with HIV-1 infection in people living with HIV-1 (PWH), thanks to durable virologic suppression. Despite this, people with HIV-1 experience chronic inflammation associated with co-morbidities. While no single known mechanism accounts for chronic inflammation, there is significant evidence to support the role of the NLRP3 inflammasome as a key driver.

Numerous studies have demonstrated therapeutic impact of cannabinoids, including exerting modulatory effects on the NLRP3 inflammasome. Given the high rates of cannabinoid use in PWH, it is of great interest to understand the intersecting biology of the role of cannabinoids in HIV-1-associated inflammasome signaling. Here we describe the literature of chronic inflammation in people with HIV, the therapeutic impact of cannabinoids in PWH, endocannabinoids in inflammation, and HIV-1-associated inflammation. We describe a key interaction between cannabinoids, the NLRP3 inflammasome, and HIV-1 viral infection, which supports further investigation of the critical role of cannabinoids in HIV-1 infection and inflammasome signaling.”

https://pubmed.ncbi.nlm.nih.gov/37027347/

“It is evident from the literature that cannabinoids show protective effects against inflammation associated with HIV-1. In both human and animal studies, THC/cannabis treatment has been shown to reduce inflammatory markers, including NLRP3-associated cytokine signaling and T-cell activation and proliferation. Studies also implicate a neuroprotective effect against NO-mediated cytotoxicity and BBB breakdown in rodents. Taken together, these findings suggest a role for cannabinoid receptor activation in reducing chronic inflammation and associated pathologies in PWH.”

https://www.degruyter.com/document/doi/10.1515/nipt-2023-0002/html

Risk of Motor Vehicle Collisions and Culpability among Older Drivers Using Cannabis: A Meta-Analysis

brainsci-logo

“Limited studies have investigated the effects of cannabis use on driving among older adults, who represent the fastest growing segment of drivers globally. We conducted a systematic review and meta-analysis to evaluate the effects of delta-9-tetrahydrocannabinol (THC) exposure on risks of (1) motor vehicle collisions (MVC) and (2) culpability for MVCs among adults 50 years and older. Three reviewers screened 7022 studies identified through MEDLINE, EMBASE, CENTRAL, and PsycINFO. Odds Ratios (OR) were calculated using the Mantel-Haenszel method in Review Manager 5.4.1. Heterogeneity was assessed using I2. The National Heart, Lung, and Blood Institute tool was used to assess the quality of each study. Seven cross-sectional studies were included. Three studies evaluated culpability while four evaluated MVC.

The pooled risk of MVC was not significantly different between THC-positive and THC-negative older drivers (OR, 95% CI 1.15 [0.40, 3.31]; I2 = 72%). In culpability studies, THC exposure was not significantly associated with an increased risk of being culpable for MVC among adults over the age of 50 (OR, 95% CI 1.24 [0.95, 1.61]; I2 = 0%). Inspection of funnel plots did not indicate publication bias.

Our review found that THC exposure was not associated with MVC involvement nor with culpability for MVCs.”

https://pubmed.ncbi.nlm.nih.gov/36979231/

https://www.mdpi.com/2076-3425/13/3/421

A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities

plants-logo

“For more than a century, Cannabis was considered a narcotic and has been banned by lawmakers all over the world. In recent years, interest in this plant has increased due to its therapeutic potential, in addition to a very interesting chemical composition, characterized by the presence of an atypical family of molecules known as phytocannabinoids. With this emerging interest, it is very important to take stock of what research has been conducted so far on the chemistry and biology of Cannabis sativa.

The aim of this review is to describe the traditional uses, chemical composition and biological activities of different parts of this plant, as well as the molecular docking studies. Information was collected from electronic databases, namely SciFinder, ScienceDirect, PubMed and Web of Science. 

Cannabis is mainly popular for its recreational use, but it is also traditionally used as remedy for the treatment of several diseases, including diabetes, digestive, circulatory, genital, nervous, urinary, skin and respiratory diseases.

These biological proprieties are mainly due to the presence of bioactive metabolites represented by more than 550 different molecules. Molecular docking simulations proved the presence of affinities between Cannabis compounds and several enzymes responsible for anti-inflammatory, antidiabetic, antiepileptic and anticancer activities.

Several biological activities have been evaluated on the metabolites of Cannabis sativa, and these works have shown the presence of antioxidant, antibacterial, anticoagulant, antifungal, anti-aflatoxigenic, insecticidal, anti-inflammatory, anticancer, neuroprotective and dermocosmetic activities. This paper presents the up-to-date reported investigations and opens many reflections and further research perspectives.”

https://pubmed.ncbi.nlm.nih.gov/36986932/

“At present, more than 545 phytochemicals have been described in the different parts of the Cannabis plant. The most represented metabolite class is the phytocannabinoids and they exhibit enormous structural diversity and bioactivities. Cannabis sativa is found in a wide variety of forms and environments on all continents and its pharmacological properties seem to go far beyond psychotic effects, with the ability to address needs such as the treatment and relief of many symptoms and diseases.”

https://www.mdpi.com/2223-7747/12/6/1245

Special Issue: Therapeutic Potential for Cannabis and Cannabinoids

biomedicines-logo

“The number of patients reporting the use of cannabis for medical purposes, whether through state-regulated medical marijuana programs or through over-the-counter hemp extracts, continues to grow. The growth in medicinal use of cannabis has in many ways surpassed the scientific data on the benefits and hazards of cannabis, and the scientific community has largely been left playing catch-up. Since 1996, when California became the first jurisdiction to legalize medical cannabis, the number of states following suit has grown and is currently at 37, while nearly 50 countries have legalized medical cannabis (and even more have decriminalized the plant) including Canada, Austria, Uruguay, Australia, South Korea, and Lesotho.

Cannabis sp. produces a number of phytochemicals with potential medical benefits including terpenes, flavonoids, and a unique class of molecules called cannabinoids, of which Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two most studied. Amazingly, the plant produces over 100 different cannabinoids with different potential therapeutic targets and activities, and these remain understudied.

The therapeutic benefits of cannabinoids are due, in large part, to the endocannabinoid system that exists in the human body, in addition to the ability of cannabinoids to interact and signal through a large number of disparate receptor molecules.”

“Cannabis is a complicated plant that produces over 100 cannabinoids in addition to terpenes and flavonoids. Adding to the complexity of trying to address the mechanism of action for cannabis is the fact that the cannabinoids that have been studied have been reported to exhibit activity at a number of different receptors.

This makes cannabinoids (and cannabis) a promiscuous drug. While typically viewed as a negative, promiscuous drugs do offer some advantages, most notably the ability to target different pathways of a disease with one medication.

The field of medical cannabis is growing rapidly, and as patients continue to use this plant to treat their conditions, there will remain a growing need for the scientific and medical communities to better understand how cannabis can impact the body.”

https://www.mdpi.com/2227-9059/11/3/902

Comparing the effects of medical cannabis for chronic pain patients with and without co-morbid anxiety: A cohort study

Publication Cover

“Introduction: There is growing evidence on the efficacy of cannabis-based medicinal products (CBMPs) for chronic pain (CP). Due to the interaction between CP and anxiety, and the potential impact of CBMPs on both anxiety and CP, this article aimed to compare the outcomes of CP patients with and without co-morbid anxiety following CBMP treatment.

Methods: Participants were prospectively enrolled and categorized by baseline General Anxiety Disorder-7(GAD-7) scores, into ‘no anxiety'(GAD-7 < 5) and ‘anxiety'(GAD-7 ≥ 5) cohorts. Primary outcomes were changes in Brief Pain Inventory Short-Form, Short-form McGill Pain Questionnaire-2, Pain Visual Analogue Scale, Sleep Quality Scale (SQS), GAD-7 and EQ-5D-5L index values at 1, 3 and 6 months.

Results: 1254 patients (anxiety = 711; no anxiety = 543) met inclusion criteria. Significant improvements in all primary outcomes were observed at all timepoints (p < 0.050), except GAD-7 in the no anxiety group(p > 0.050). The anxiety cohort reported greater improvements in EQ-5D-5L index values, SQS and GAD-7(p < 0.050), but there were no consistent differences in pain outcomes.

Conclusion: A potential association between CBMPs and improvements in pain and health-related quality of life (HRQoL) in CP patients was identified. Those with co-morbid anxiety reported greater improvements in HRQoL.”

https://pubmed.ncbi.nlm.nih.gov/36803620/

“A potential association between initiation of CBMPs and improvements in pain and HRQoL, as well as reductions in opioid consumption and an acceptable AE profile in both cohorts was found, complimenting previous UKMCR studies. Moreover, CP patients with co-morbid anxiety may achieve better HRQoL outcomes and potentially pain outcomes due to CBMPs’ peripheral and central effects.”

https://www.tandfonline.com/doi/full/10.1080/14737175.2023.2181696

A Retrospective Medical Record Review of Adults with Non-Cancer Diagnoses Prescribed Medicinal Cannabis

Logo of jclinmed

“Research describing patients using medicinal cannabis and its effectiveness is lacking. We aimed to describe adults with non-cancer diagnoses who are prescribed medicinal cannabis via a retrospective medical record review and assess its effectiveness and safety. From 157 Australian records, most were female (63.7%; mean age 63.0 years). Most patients had neurological (58.0%) or musculoskeletal (24.8%) conditions. Medicinal cannabis was perceived beneficial by 53.5% of patients.

Mixed-effects modelling and post hoc multiple comparisons analysis showed significant changes overtime for pain, bowel problems, fatigue, difficulty sleeping, mood, quality of life (all p < 0.0001), breathing problems (p = 0.0035), and appetite (p = 0.0465) Symptom Assessment Scale scores. For the conditions, neuropathic pain/peripheral neuropathy had the highest rate of perceived benefit (66.6%), followed by Parkinson’s disease (60.9%), multiple sclerosis (60.0%), migraine (43.8%), chronic pain syndrome (42.1%), and spondylosis (40.0%). For the indications, medicinal cannabis had the greatest perceived effect on sleep (80.0%), followed by pain (51.5%), and muscle spasm (50%). Oral oil preparations of balanced delta-9-tetrahydrocannabinol/cannabidiol (average post-titration dose of 16.9 mg and 34.8 mg per day, respectively) were mainly prescribed. Somnolence was the most frequently reported side effect (21%).

This study supports medicinal cannabis’ potential to safely treat non-cancer chronic conditions and indications.”

“Cannabis (Cannabaceae) has been used medicinally since 400 AD for its analgesic, appetite enhancement, and myorelaxant properties. Emerging evidence suggests that people with chronic conditions may benefit from using medicinal cannabis for treating chronic pain, multiple sclerosis-related spasticity, epilepsy, Parkinson’s disease, insomnia, and anxiety.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965412/

A Phase I Randomized, Double-blind, Placebo-controlled Study on Efficacy and Safety Profile of a Sublingually Administered Cannabidiol /Delta 9-tetrahydrocannabidiol (10: 1) Regimen in Diabetes Type 2 Patients

Logo of ijpr

“The current study aimed to evaluate the safety profile and efficacy of a cannabis-based sublingual spray, CBDEX10® (containing 100 µg cannabidiol and 10 µg Δ9-tetrahydrocannabinol per puff; CBD/Δ9-THC 10:1), in improving lipid profile and glycemic state of the diabetic patients.

Fifty diabetic patients were randomly allocated to the treatment (n = 25; receiving two puffs of CBDEX10® twice daily) or the control groups (n = 25; receiving two puffs of placebo). The primary endpoint of the study was to evaluate the efficacy of the CBDEX10® adjunctive therapy in improving the lipid profile and glycemic state of diabetic patients; the secondary endpoint was to assess the safety profile and tolerability of the spray.

A statistically significant decline in total cholesterol [estimated treatment difference (ETD) = −19.73 mg/dL; P < 0.05], triglyceride (ETD = −27.84 mg/dL; P < 0.01), LDL-C (ETD = −5.37 mg/dL; P < 0.01), FBS (ETD = −12 mg/dL; P < 0.01), Hb A1C (ETD = −0.21 mg/dL; P < 0.01) and insulin secretion (ETD = -5.21 mIU/L; P < 0.01) was observable in the patients treated with CBDEX10® at the end of the 8-week treatment period. Regarding safety, the mentioned adjunctive regimen was well, and there were no serious or severe adverse effects.

Overall, CBDEX1® sublingual spray could be a new therapeutic agent for lipid and glycemic control in diabetic patients.”

“Based on these observations, the combination of CBD/Δ9-THC regimen could be a new therapeutic regimen for controlling the lipid profile and glycemic state of DM patients.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024807/

Multi-Targeting Intranasal Nanoformulation as a Therapeutic for Alzheimer’s Disease

biomolecules-logo

“Melatonin, insulin, and Δ9-tetrahydrocannabinol (THC) have been shown to reverse cognitive deficits and attenuate neuropathologies in transgenic mouse models of Alzheimer’s disease (AD) when used individually. Here, we evaluated the therapeutic properties of long-term intranasal treatment with a novel nanoformulation containing melatonin, insulin, and THC in aged APPswe/PS1ΔE9 (APP/PS1) mice, a transgenic model of AD.

Transgenic mice at the age of 12 months were intranasally administered with a new nanoformulation containing melatonin, insulin, and THC at doses of 0.04, 0.008, and 0.02 mg/kg, respectively, once daily for 3 months. The spatial memory of the mice was assessed using the radial arm water maze (RAWM) test before and after drug treatment. Brain tissues were collected at the end of the treatment period for the assessment of Aβ load, tauopathy state, and markers of mitochondrial function.

The RAWM test revealed that the treatment with the melatonin-insulin-THC (MIT) nasal spray improved the spatial learning memory of APP/PS1 mice significantly. Results of protein analyses of brain homogenates indicated that MIT treatment significantly decreased the tau phosphorylation implicated in tau toxicity (p < 0.05) and the expression of CKMT1 associated with mitochondrial dysfunction. Moreover, MIT significantly decreased the expression of two mitochondrial fusion-related proteins, Mfn2 and Opa1 (p < 0.01 for both), while increasing the expression of a mitophagy regulator, Parkin, suggesting a compensatory enhancement of mitophagy due to MIT-promoted mitochondrial fusion.

In conclusion, this study was the first to demonstrate the ability of an MIT nanoformulation to improve spatial memory in AD mice through its multi-targeting effects on Aβ production, tau phosphorylation, and mitochondrial dynamics. Thus, MIT may be a safe and effective therapeutic for AD.”

https://pubmed.ncbi.nlm.nih.gov/36830601/

“The results of the present study provide the first evidence that MIT nanoformulation containing melatonin, insulin, and THC has potential as a multi-targeting treatment for AD.”

https://www.mdpi.com/2218-273X/13/2/232

Medical Cannabis for Chronic Nonmalignant Pain Management

SpringerLink

“Purpose of review: Cannabis has been used since ancient times for medical and recreational research. This review article will document the validity of how medical cannabis can be utilized for chronic nonmalignant pain management.

Recent findings: Current cannabis research has shown that medical cannabis is indicated for symptom management for many conditions not limited to cancer, chronic pain, headaches, migraines, and psychological disorders (anxiety and post-traumatic stress disorder). Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are active ingredients in cannabis that modulate a patient’s symptoms. These compounds work to decrease nociception and symptom frequency via the endocannabinoid system. Research regarding pain management is limited within the USA as the Drug Enforcement Agency (DEA) classifies it as a schedule one drug. Few studies have found a limited relationship between chronic pain and medical cannabis use. A total of 77 articles were selected after a thorough screening process using PubMed and Google Scholar. This paper demonstrates that medical cannabis use provides adequate pain management. Patients suffering from chronic nonmalignant pain may benefit from medical cannabis due to its convenience and efficacy.”

https://pubmed.ncbi.nlm.nih.gov/36897501/

“Patients often seek medical consultations most commonly because of having intolerable chronic pain. Medications such as NSAIDs or opioids are being used to relieve such pain. However, long-term use of these medications can also cause adverse effects on health. Several studies have been done regarding cannabis as an alternative for chronic pain. Some patients were reported to get relief from cannabis consumption through various routes, and the use of it has been legalized, too, in some states in the USA and countries like Germany. Italy, the Netherlands, UK, Australia, Uruguay, Brazil, Colombia, Chile, Thailand, and Jamaica. Compared with opioids, studies show that cannabis use has lesser adverse effects, and it could even lessen opioid dependence.”

https://link.springer.com/article/10.1007/s11916-023-01101-w

Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels

pubmed logo

“Background: Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions.

Methods: We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV).

Results: Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents.

Conclusion: This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.”

https://pubmed.ncbi.nlm.nih.gov/36890518/