“The management of orofacial pain to alleviate the quality of life of affected patients is becoming increasingly challenging for scientific research and healthcare professionals. From this perspective, in addition to conventional therapies, new alternatives are being sought, increasingly looking at the use of both natural and synthetic products.
Cannabis sativa L. represents an interesting source of bioactive compounds, including non-psychoactive cannabinoids, flavonoids, and terpenes, many of which are effective in improving pain intensity.
Here, we aim to analyze the possible mechanisms of action of the bioactive natural and synthetic hemp-derived compounds responsible for the modulatory effects on pain-related pathways. The ability of these compounds to act on multiple mechanisms through a synergistic effect, reducing both the release of inflammatory mediators and regulating the response of the endocannabinoid system, makes them interesting agents for alternative formulations to be used in orofacial pain.”
“Objectives: Cannabis has been proposed as a potential treatment for Parkinson’s disease (PD) due to its neuroprotective benefits. However, there has been no rigorous review of preclinical studies to evaluate any potential treatment effect. This systematic review was undertaken to provide evidence in support or against a treatment effect of cannabinoids in animal models of PD.
Methods: Databases were searched for any controlled comparative studies that assessed the effects of any cannabinoid, cannabinoid-based treatment or endocannabinoid transport blocker on behavioural symptoms in PD animal models.
Results: A total of 41 studies were identified to have met the criteria for this review. 14 of these studies were included in meta-analyses of rotarod, pole and open field tests. Meta-analysis of rotarod tests showed a weighted mean difference of 31.63 s for cannabinoid-treated group compared with control. Meta-analysis of pole tests also showed a positive treatment effect, evidenced by a weighted mean difference of -1.51 s for cannabinoid treat group compared with control. However, meta-analysis of open field test demonstrated a standardised mean difference of only 0.36 indicating no benefit.
Conclusion: This review demonstrates cannabinoid treatment effects in alleviating motor symptoms of PD animal models and supports the conduct of clinical trials of cannabis in PD population. However, there is no guarantee of successful clinical translation of this outcome because of the many variables that might have affected the results, such as the prevalent unclear and high risk of bias, the different study methods, PD animal models and cannabinoids used.”
“Overall, this systematic review and meta-analysis provides evidence of the benefit of cannabinoid treatment in PD animal models, which warrants further investigations. This review supports clinical trial of cannabis or cannabis-based treatments in humans with PD.”
“Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa‘s biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.”
“In conclusion, there is a complex array of effects that polyphenolic and cannabinoid compounds elicit in relation to melanoma. Multiple biochemical and genetic cascades are regulated through the presence of these natural substances. Polyphenolic compounds emergingly demonstrate a significant capacity to mediate many of the impacts of cancer, including pain, inflammation and invasiveness. Combined administration of polyphenol compounds has shown existing promise for improvement of potency and bioactivity of these substances. To combat the complexity of cancer, new pharmacological perspectives are necessary. Accordingly, plant polyphenols, particularly those of cannabis provide a deep well of structural potential for the emergence of novel drugs with multi-applicability to the total sphere of cancer treatment. This is merely the budding tip of biocompounds available for exploration in plant-based medicine and is a substantive base for future research.”
“Acute and chronic pain management remains an ongoing challenge for hand surgeons. This has been compounded by the ongoing opioid epidemic in the United States.
With the increasing legalization of medical and recreational cannabis throughout the United States and other countries, previous societal stigmas about this substance keep evolving, and recognition of medical cannabis as an opioid-sparing pain management alternative is growing. A review of the current literature demonstrates a strong interest from patients regarding the use of medical cannabis for pain control.
Current evidence demonstrates its efficacy and safety for chronic musculoskeletal and neuropathic pain. However, definitive conclusions regarding the efficacy of cannabis for pain control in hand and upper extremity conditions require continued investigation.
The purpose of this article is to provide a general review of the mechanism of medical cannabis and a scoping review of the current evidence for its efficacy, safety, and potential applicability in hand and upper extremity conditions.”
“Purpose: Appropriate preoperative screening techniques are needed to safely provide anesthesia to increasing numbers of cannabis using surgical patients.
Design: This was a quasi-experimental quality improvement project.
Methods: Preoperative identification of cannabis users by registered nurses (RNs) and certified registered nurse anesthetists (CRNAs) was compared to baseline identification rates. CRNAs’ compliance with evidenced base guidelines was recorded. Perioperative medication requirements were recorded and compared between cannabis-users and non-cannabis users.
Findings: Identification of cannabis users by CRNAs conducting preanesthetic assessments increased from 4.08% to 14.36% while RN identification improved from 11.22% to 13.81%. Compliance with identification guidelines was 69.2% among CRNAs.
There were no differences in anesthetic requirements, complications, or postanesthesia care unit (PACU) length of stay between cannabis users and non-users.
Conclusion: Preoperative identification of cannabis users allows for safer, more effective perioperative care by CRNAs, registered nurses, and surgical staff.”
“The growing interest in the development of drugs that target the endocannabinoid system has extended to conditions that affect the audiovestibular pathway. The expression of cannabinoid (CB) receptors in that pathway has been widely demonstrated, indicating a therapeutic potential for drug development at this level. These medications may be beneficial for conditions such as noise-induced hearing loss, ototoxicity, or various forms of vertigo of central or peripheral origin. The therapeutic targets of interest include natural or synthetic compounds that act as CB1/CB2 receptor agonists/antagonists, and inhibitors of the endocannabinoid-degrading enzymes FAAH and MAGL. Furthermore, genetic variations implicated in the response to treatment and the development of related disorders such as epilepsy or migraine have been identified. Direct methods of administering these medications should be examined beyond the systemic strategy.”
“Background: Chronic neuropathic pain is often debilitating and can have a significant impact on sleep health and quality of life. There is limited information on the impact of cannabinoids on sleep health when treating neuropathic pain.
Objective: The objectives of this systematic review and meta-analysis were to determine the effect of cannabinoids on sleep quality, pain intensity, and patient impression of treatment efficacy in patients with neuropathic pain.
Evidence review: Nine available medical literature databases were searched for randomized controlled trials comparing synthetic and natural cannabinoids to placebo in patients with neuropathic pain syndromes. Data on validated tools for sleep quality, pain intensity, patients’ global impression of change (PGIC), and incidence of adverse effects of cannabinoids were extracted and synthesized.
Findings: Of the 3491 studies screened, eight randomized controlled trials satisfied the inclusion criteria for this review. Analyses were performed using R -4.1.2. using the metafor package and are interpreted using alpha=0.05 as the threshold for statistical significance. Validated measures for sleep health were not used in most studies. Meta-analysis of data from six studies showed that cannabinoids were associated with a significant improvement in sleep quality (standardized mean difference (SMD): 0.40; 95% CI: 0.19 to -0.61, 95% prediction interval (PI): -0.12 to 0.88, p-value=0.002, I2=55.26, τ2=0.05, Q-statistic=16.72, GRADE: moderate certainty). Meta-analysis of data from eight studies showed a significant reduction in daily pain scores in the cannabinoid (CB) group (SMD: -0.55, 95% CI:-0.69 to -0.19, 95% PI: -1.51 to 0.39, p=0.003, I2=82.49, τ2=0.20, Q-statistic=47.69, GRADE: moderate certainty). However, sleep health and analgesic benefits were associated with a higher likelihood of experiencing daytime somnolence, nausea, and dizziness.
Conclusions: Cannabinoids have a role in treating chronic neuropathic pain as evidenced by significant improvements in sleep quality, pain intensity, and PGIC. More research is needed to comprehensively evaluate the impact of cannabinoids on sleep health and analgesic efficacy.”
“Background: The causal impacts of recreational cannabis legalization are not well understood due to the number of potential confounds. We sought to quantify possible causal effects of recreational cannabis legalization on substance use, substance use disorder, and psychosocial functioning, and whether vulnerable individuals are more susceptible to the effects of cannabis legalization than others.
Methods: We used a longitudinal, co-twin control design in 4043 twins (N = 240 pairs discordant on residence), first assessed in adolescence and now age 24-49, currently residing in states with different cannabis policies (40% resided in a recreationally legal state). We tested the effect of legalization on outcomes of interest and whether legalization interacts with established vulnerability factors (age, sex, or externalizing psychopathology).
Results: In the co-twin control design accounting for earlier cannabis frequency and alcohol use disorder (AUD) symptoms respectively, the twin living in a recreational state used cannabis on average more often (βw = 0.11, p = 1.3 × 10-3), and had fewer AUD symptoms (βw = -0.11, p = 6.7 × 10-3) than their co-twin living in an non-recreational state. Cannabis legalization was associated with no other adverse outcome in the co-twin design, including cannabis use disorder. No risk factor significantly interacted with legalization status to predict any outcome.
Conclusions: Recreational legalization was associated with increased cannabis use and decreased AUD symptoms but was not associated with other maladaptations. These effects were maintained within twin pairs discordant for residence. Moreover, vulnerabilities to cannabis use were not exacerbated by the legal cannabis environment. Future research may investigate causal links between cannabis consumption and outcomes.”
“Maternal stress can result in changes in the hypothalamic-pituitary-adrenal (HPA) axis and lead to stress-related behaviours in offspring. Under physiological conditions, delta-9 tetrahydrocannabinol (THC) appears to be detrimental for fertility. However, cannabis is also commonly used for stress-relief. THC acts on the endocannabinoid receptors in granulosa cells (GCs), which affects oocyte competency. The objective of this study was to evaluate the effects of THC on in vitro bovine granulosa cell viability, apoptosis, and stress response pathway. GCs were cultured in vitro in the presence of clinically relevant therapeutic and recreational plasma doses of THC. Cortisol doses reflecting normal and elevated plasma levels were used to evaluate the effects of THC under induced stress in vitro. No effect of THC was observed on cell viability or apoptosis. High and low cortisol concentrations caused significant increases in 11β-HSD1 mRNA expression (n = 6, p < 0.0001). Interestingly, when combined with high [THC], there was a significant decrease in 11β-HSD1 expression compared to high and low cortisol treatments alone (p < 0.001, p < 0.05). GR expression was unaffected by cortisol treatments, and low [THC] treatment maintained increased expression in the presence of high and low cortisol treatments (n = 6, p < 0.01, p < 0.0001). Our findings represent a foundation to obtain useful data for evaluating THC potential therapeutic benefit.”
“Palliative care teams are often consulted to assist in treating persistent dementia-related behavioral issues. Delta-9-tetrahydrocannabinol (THC) offers an alternative to traditional antipsychotic drugs in the long-term management of dementia with behavioral change. We present the case of an 85-year-old man with dementia with Lewy bodies with worsening aggression refractory to antipsychotic management. Multiple regimens of antipsychotics failed both in the outpatient and inpatient settings. After exhausting other options and in the setting of worsening agitation, a tincture of THC was prescribed. After starting THC tincture, the patient’s behavior rapidly improved, and he was discharged home to the care of his spouse. The challenges of prescribing and obtaining THC are discussed.”