[Activation of cannabinoid receptor 2 alleviates acute lung injury in rats with lipopolysaccharide-induced sepsis]

南方医科大学学报

“Objective: To investigate the protective effect of cannabinoid receptor 2 (CB2) activation against acute lung injury in rats with lipopolysaccharide (LPS)-induced sepsis and explore the underlying mechanism.

Results: The rat models of sepsis showed severe damage of alveolar structures with significantly decreased fluid clearance rate, lowered pulmonary expressions of CB2, occludin and ZO-1 mRNA and proteins, increased water content in the lung tissue, and increased phosphorylation level of P38 MAPK and TNF-α and IL-1β levels in lung lavage fluid (all P < 0.05). Treatment with JWH133 improved alveolar pathology in the septic rats, but there was still inflammatory infiltration; lung tissue water content, phosphorylation of P38 MAPK, and TNF-α and IL-1β levels in lung lavage fluid were all significantly decreased, and the fluid clearance rate, pulmonary expressions of CB2, occludin and ZO-1 were significantly increased (all P < 0.05). Additional treatment with SB203580 resulted in further improvements of alveolar pathologies, lowered phosphorylation levels of P38 MAPK in the lung tissue and TNF-α and IL-1β levels in lung lavage fluid, and increased the protein expressions of occludin and ZO-1 (P < 0.05) without causing significant changes in mRNA and protein expression of CB2 (P > 0.05).

Conclusion: In rats with LPS-induced sepsis, activation of CB2 can inhibit the p38 MAPK signaling pathway, reduce the release of inflammatory factors in the lung tissues, promote tight junction protein expressions, and thus offer protection against acute lung injury.”

https://pubmed.ncbi.nlm.nih.gov/36210711/

https://www.j-smu.com/CN/10.12122/j.issn.1673-4254.2022.09.14

Evaluating Cannabis sativa L.’s neuroprotection potential: From bench to bedside

Phytomedicine

“Background: Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer’s disease. Although several approved treatments exist for Alzheimer’s disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases.

Purpose: This review evaluated the neuroprotective potential of C. sativa’s active constituents for potential therapeutic use in dementia and Alzheimer’s disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration.

Study design: Relevant information on the neuroprotective potential of the C. sativa’s phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa’s component bioactivity was organized for therapeutic applications against neurodegenerative diseases.

Methods: The therapeutic use of C. sativa related to Alzheimer’s disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals.

Results: Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer’s disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer’s disease, amyloid β.

Conclusions: These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.”

https://pubmed.ncbi.nlm.nih.gov/36209703/

https://www.sciencedirect.com/science/article/abs/pii/S0944711322005748?via%3Dihub

Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases

Frontiers - Crunchbase Company Profile & Funding

“Cannabis preparations are gaining popularity among patients with various skin diseases. Due to the lack of scientific evidence, dermatologists remain cautious about their prescriptions. So far, only a few studies have been published about the effects of high-potency cannabis extracts on microorganisms (especially dermatophytes) causing skin problems that affect more than 25% of the worldwide population. Even though, the high-potency cannabis extracts prepared by cold extraction are mostly composed of non-psychoactive tetrahydrocannabinolic acid (THCA) and only low amount of THC, their use in topical treatment can be stigmatized. The in vitro antimicrobial and antifungal activity of two high potent cannabis strains extracted by three solvents traditionally or currently used by cannabis users (ethanol; EtOH, butane; BUT, dimethyl ether; DME) was investigated by broth dilution method. The chemical profile of cannabis was determined by high-performance liquid chromatography with ultraviolet detection and gas chromatography with mass spectrometer and flame ionization detector. The extraction methods significantly influenced chemical profile of extracts. The yield of EtOH extracts contained less cannabinoids and terpenes compared to BUT and DME ones. Most of the extracts was predominantly (>60%) composed of various cannabinoids, especially THCA. All of them demonstrated activity against 18 of the 19 microorganisms tested. The minimal inhibitory concentrations (MICs) of the extracts ranged from 4 to 256 μg/mL. In general, the bacteria were more susceptible to the extracts than dermatophytes. Due to the lower content of biologically active substances, the EtOH extracts were less effective against microorganisms. Cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms. Therefore, they could serve as an alternative or supportive treatment to commonly used antibiotics.”

https://pubmed.ncbi.nlm.nih.gov/36204633/

“Our research brought new evidence that cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms and showed that cannabis could serve as an alternative or supportive treatment to commonly used antibiotics.”

https://www.frontiersin.org/articles/10.3389/fmicb.2022.953092/full

Patient-Related Barriers to the Prescription of Cannabinoid-Based Medicines in Palliative Care: A Qualitative Approach

View details for Palliative Medicine Reports cover image

“Background: A minority of palliative care patients benefit from prescribed cannabinoid-based medicines (CBMs).

Objective: The objective of this study was to explore the perceptions, expectations, and experiences of CBM usage among palliative care patients and to evaluate whether and how they may constitute an obstacle to prescription.

Design: This is a qualitative study involving semistructured in-depth interviews with 10 patients hospitalized in a palliative care unit in Geneva, Switzerland. The data were analyzed using the interpretative phenomenological analysis method.

Results: Semistructured interviews were conducted on 10 patients (average age of 73.3 years), mainly with advanced cancer. Most patients favored CBM use in palliative care and distinguished it from recreational use. Seven themes were identified from patients’ perceptions, experiences, and expectations during the interviews: right time to begin CBMs, off-label use, information about side effects, lack of a safe medical framework, costs, relatives, and social acceptance of CBMs.

Conclusion: The obstacles described by the patients seem to be surmountable with specific measures at the clinical level. We suggest training health professionals in a palliative care setting, especially in explaining the effects and side effects. CBMs will undoubtedly play a more significant role in palliative care medicine in the years to come.”

https://pubmed.ncbi.nlm.nih.gov/36203714/

https://www.liebertpub.com/doi/10.1089/pmr.2022.0021

[Low-dose THC in geriatric and palliative patients]

pubmed logo

“Background: Cannabis-containing medicines have been successfully used in our practice for more than 20 years in pain and especially in geriatric and palliative patients. While it was initially a very indication-specific use (pain, loss of appetite, etc.) and also with higher THC doses, this changed over time to low THC doses and a therapy focus on suffering-perpetuating symptoms and especially on stress (Matrix of Symptoms).

Method: As part of the legally prescribed companion survey, we evaluated our data in parallel and discussed it publicly in a series of publications. Based on these published results, the article is intended to show an overview of our experiences.

Results: Low-dose THC has a positive effect on morbidity, side effects, quality of life and mortality in geriatric and palliative patients.

Conclusion: Early therapy is particularly appropriate in geriatric and palliative patients due to the clear benefit-risk ratio of low-dose THC.”

https://pubmed.ncbi.nlm.nih.gov/36195786/

Identification of CB1 Ligands among Drugs, Phytochemicals and Natural-Like Compounds: Virtual Screening and In Vitro Verification

Go to ACS Chemical Neuroscience

“Cannabinoid receptor type 1 (CB1) is an important modulator of many key physiological functions and thus a compelling molecular target. However, safe CB1 targeting is a non-trivial task. In recent years, there has been a surge of data indicating that drugs successfully used in the clinic for years (e.g. paracetamol) show CB1 activity. Moreover, there is a lot of promise in finding CB1 ligands in plants other than Cannabis sativa. In this study, we searched for possible CB1 activity among already existing drugs, their metabolites, phytochemicals, and natural-like molecules. We conducted two iterations of virtual screening, verifying the results with in vitro binding and functional assays. The in silico procedure consisted of a wide range of structure- and ligand-based methods, including docking, molecular dynamics, and quantitative structure-activity relationship (QSAR). As a result, we identified travoprost and ginkgetin as CB1 ligands, which provides a starting point for future research on the impact of their metabolites or preparations on the endocannabinoid system. Moreover, we found five natural-like compounds with submicromolar or low micromolar affinity to CB1, including one mixed partial agonist/antagonist viable for hit-to-lead phase. Finally, the computational procedure established in this work will be of use for future screening campaigns for novel CB1 ligands.”

https://pubmed.ncbi.nlm.nih.gov/36197801/

https://pubs.acs.org/doi/10.1021/acschemneuro.2c00502

Cannabinoids in hyperhidrosis

Publication Cover

“Hyperhidrosis can significantly curtail patient quality of life, from debilitating physical symptoms to social stigmatization and reduced life opportunities. Current treatments often prove unsatisfactory, especially in sufferers of generalized hyperhidrosis. In this open trial, we present the case of a refractory generalized hyperhidrosis treated with cannabinoids. We found a remarkable reduction in the volume of sweat and an improvement to the patient’s quality of life using this novel low-cost and low-impact approach.”

https://pubmed.ncbi.nlm.nih.gov/36200741/

https://www.tandfonline.com/doi/full/10.1080/09546634.2022.2127308?scroll=top&needAccess=true

The effect of medical cannabis on cognitive functions: a systematic review

Systematic Reviews logo

“Background: Cannabis-based medicines are widely used in the treatment of a number of medical conditions. Unfortunately, cognitive disturbances are often reported as adverse events, although conversely, cognitive improvements have been reported. Hence, the objective of the present study was to identify, critically appraise and synthesise research findings on the potential impact of cannabis-based medicines on cognitive functioning.

Findings: Twenty-three studies were included, comprising a total of N = 917. Eight studies used Sativex as the cannabis-based medicine two used Epidiolex, two other studies used sprays, three studies used gelatine capsules, five smoked cannabis, two other and finally one studied cannabis withdrawal. Fifteen studies reported non-significant findings; six reported cognitive impairments; one study found cognitive improvement and a single study found improvement following withdrawal. Thirteen studies had cognitive or neuropsychological functioning as the primary outcome.

Conclusions: Due to a large heterogeneity and methodological limitations across studies, it is not possible to make any definite conclusions about the impact of cannabis-based medicines on cognitive functioning. However, the majority of high-quality evidence points in the direction that the negative impact of cannabis-based medicines on cognitive functioning is minor, provided that the doses of THC are low to moderate. On the other hand, long-term use of cannabis based medicines may still adversely affect cognitive functioning. In the studies that found impaired cognitive functioning to be significant, all of the test scores were either within the normal range or below what would be characterised as a neuropsychologically cognitive impairment.”

https://pubmed.ncbi.nlm.nih.gov/36192811/

“The potential positive effect of CBMs on cognitive functioning may be due to practice effects or mediated by alleviation of other medical symptoms, such as pain, depression or sleep problems.”

https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-022-02073-5

Association of Cannabis Use During Pregnancy with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Retrospective Cohort Study

“Background and aims: Cannabis use is increasingly common among pregnant individuals and might be a risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We aimed to test whether prenatal cannabis use is associated with increased risk of SARS-CoV-2 infection during pregnancy.

Design: Retrospective cohort study.

Setting: California USA.

Participants: 58,114 pregnancies (with outcomes from 3/5/2020 to 9/30/2021) among 57,287 unique pregnant women aged 14-54 years who were screened for prenatal substance use, enrolled in Kaiser Permanente Northern California (KPNC) (a healthcare system), and had not tested positive for COVID-19 prior to pregnancy onset.

Measurements: We utilized data from the KPNC electronic health record. Cannabis use status (current, recently quit, non-user) was based on universal screenings during prenatal care (including ≥1 urine toxicology test and self-reported use on a self-administered questionnaire). SARS-CoV-2 infection (based on polymerase chain reaction (PCR) tests) was estimated in time-to-event analyses using Cox proportional hazard regression models adjusting for covariates. Secondary analyses examined differences in a) SARS-CoV-2 positivity testing rates and b) SARS-CoV-2 infection rates among those tested.

Findings: We observed 348,810 person-months of follow-up time in our cohort with 41,064 SARS-CoV-2 PCR tests, and 6% (n=2,414) of tests being positive. At the start of follow-up, 7% of pregnant individuals had current use, 12% had recently quit, and 81% did not use cannabis. Adjusting for covariates, current use was associated with lower rates of SARS-CoV-2 infection (adjusted hazard ratio [aHR]=0.60,95% confidence interval [CI]:0.49-0.74) than non-use. Those who had recently quit did not differ from non-cannabis users in infection rates (aHR=0.96,95%CI:0.86-1.08). Sensitivity analyses among patients who received a SARS-CoV-2 test also found lower odds of infection associated with current versus no cannabis use (aOR=0.76,CI:0.61-0.93).

Conclusions: Current cannabis use appears to be associated with a reduced risk of severe acute respiratory syndrome coronavirus 2 infection among pregnant individuals.”

https://pubmed.ncbi.nlm.nih.gov/36189777/

https://onlinelibrary.wiley.com/doi/10.1111/add.16056

Will tetrahydrocannabinol be formed from cannabidiol in gastric fluid? An in vivo experiment

SpringerLink

“Cannabidiol (CBD) products have ascribed an uprising trend for their health-promoting effects worldwide. In contrast to Δ9-tetrahydrocannabinol (THC), CBD exhibits no state of euphoria. Since conversion of CBD into THC in an acidic environment has been reported, it has not been proved whether this degradation will also occur in human gastric fluid.

A total of 9 subjects ingested 400 mg CBD as a water-soluble liquid together with lecithin as an emulsifier and ethanol as a solubilizer. Blood samples were taken up to 4 h, and urine samples were submitted up to 48 h. THC, 11-hydroxy-Δ9-THC (THC-OH), 11-nor-9-carboxy-Δ9-THC (THC-COOH), CBD, 7-hydroxy cannabidiol (7-OH-CBD), and 7-carboxy cannabidiol (7-CBD-COOH) were determined in blood and THC-COOH and 7-CBD-COOH in urine by LC-MS/MS. Neither THC, THC-OH, nor THC-COOH were detectable in any serum specimen. Only two urine samples revealed THC-COOH values slightly above the threshold of 10 ng/ml, which could also be caused by trace amounts of THC being present in the CBD liquid.

It can be concluded that negative consequences for participants of a drug testing program due to a conversion of CBD into THC in human gastric fluid appear unlikely, especially considering a single intake of dosages of less than 400 mg.

Nevertheless, there is a reasonable risk for consumers of CBD products being tested positive for THC or THC metabolites. However, this is probably not caused by CBD cyclization into THC in human gastric fluid but is most likely due to THC being present as an impurity of CBD products.”

https://pubmed.ncbi.nlm.nih.gov/36190564/

https://link.springer.com/article/10.1007/s00414-022-02896-w