Pilot clinical and pharmacokinetic study of Δ9-Tetrahydrocannabinol (THC)/Cannabidiol (CBD) nanoparticle oro-buccal spray in patients with advanced cancer experiencing uncontrolled pain

Lopiccolo & Chang in PLoS ONE – BU Linguistics

“This pilot study aimed to assess the safety, tolerability, pharmacokinetics and exploratory analgesic effect of a novel water-soluble oro-buccal nanoparticle spray of a cannabis-based medicine (MDCNS-01) in patients with advanced incurable malignancy with unrelieved pain from opioid analgesic. The study was a non-blinded single arm 2 stage study. Stage I was a single escalating dose (n = 5) [2.5 mg Δ9-THC and 2.5 mg CBD) versus a 3-fold escalated dose. Stage II was an up-titrated dose in patients with advanced cancers and intractable pain (n = 25). During Stage I with an increased cannabis-based medicine dose, maximum observed plasma concentrations of cannabinoids were dose dependant. The water-soluble formulation in the current study resulted in a higher median (min, max) systemic exposure of Δ9-THC than CBD (AUC from 2.5 mg each of Δ9-THC and CBD, was 1.71 ng mL.h-1 (1.1, 6.6) and 0.65 ng mL.h-1 (0.49, 4.1), respectively). During stage II a subgroup of patients diagnosed with breast and prostate cancers with bone metastases, had the highest mean pain score improvement from baseline of 40% (unadjusted) and 33% (adjusted for rescue medication use). For all patients the most reported adverse events were mild or moderate drowsiness affecting 11 (44%) and 4 (6%) patients, respectively, and nausea and vomiting that affected 18 (72%) patients. The water-soluble cannabis-based medicine provided acceptable bioavailability for Δ9-THC/CBD, appeared safe and tolerable in advanced incurable cancers with uncontrolled pain with preliminary evidence of analgesic efficacy.”

https://pubmed.ncbi.nlm.nih.gov/36240167/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270543

Anti-inflammatory potential of delta-9-tetrahydrocannabinol in hyperinsulinemia: an experimental study

SpringerLink

“Background: Hyperinsulinemia (HI) means that the amount of insulin in the blood is higher than normal and is often associated with type 2 diabetes. It is known that delta-9-tetrahydrocannabinol (THC) obtained from a medicinal plant, Cannabis sativa, has therapeutic effects on many diseases.

Objective: This study aimed to investigate the effects of THC on inflammatory and oxidant status in rat pancreas with HI.

Methods: Rats were divided into groups; Control, HI, THC and HI + THC. Each group consists of 8 animals. HI and HI + THC groups were given 10% fructose in the drinking water for 12 weeks. In the last four weeks of the experiment, 1.5 mg kg-1 THC was injected intraperitoneally daily into THC and HI + THC groups. The expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB) were detected. JNK/SAPK and Grap2/p38 levels, total antioxidant and oxidant capacities (TAC and TOC) were analyzed in the pancreas.

Results: Levels of IL-6, NF-κβ, and TNF-α mRNA expression were higher in the pancreas with HI than in the control (p < 0.001 for all). THC treatment reduced the expression of IL-6, NF-κβ, and TNF-α mRNAs in the HI + THC group compared to the HI group (p < 0.001 for all). TOC increased in the HI group compared to the control group (p < 0.001). However, THC treatment reduced TOC levels in the HI + THC group compared to the HI group (p < 0.001).

Conclusion: According to the results, the THC treatment may regulate inflammation and TOC in rats with hyperinsulinemia. Thus, we can say that THC may have anti-inflammatory and antioxidant potential in metabolic disorders.”

https://pubmed.ncbi.nlm.nih.gov/36239881/

https://link.springer.com/article/10.1007/s11033-022-07996-9

Oxidative Stress and Autophagy Mediate Anti-Cancer Properties of Cannabis Derivatives in Human Oral Cancer Cells

cancers-logo

“Cannabinoids, the active components of cannabis exert palliative effects in cancer patients by preventing nausea, vomiting and pain as well as by stimulating appetite.

Recent studies indicated that cannabinoids could be helpful in treating certain rare forms of cancer and other inflammatory diseases.

The objective of this study was to investigate the cytotoxic effect of a cannabinoid mixture (CM) in oral cells. Thus, normal and cancer gingival cells were treated with different concentrations of CM to evaluate their proliferation by MTT assay, cytotoxicity by using LDH assay, colony formation with crystal violet and migration by the scratch method. In addition, apoptosis, autophagy, oxidative stress, antioxidant level, DNA damage and the mitochondrial membrane potential (ΔΨm) generated by proton pumps were measured by flow cytometry. Furthermore, deactivation of the key signaling pathways involved in cancer progression such as NF-κB, ERK1/2, p38, STAT1, STAT3, STAT5 was also evaluated by this technique.

These outcomes indicate that CM, at a concentration higher than 0.1 µg/mL, provokes high cytotoxicity in Ca9-22 oral cancer cells but not in GMSM-K gingival normal cells. Apoptosis, autophagy, antioxidant levels and mitochondrial stress as well as DNA damage in oral cells were increased following exposure to low concentration (1 µg/mL). In addition, major signaling pathways that are involved such as MAPKase, STATs and NF-κB pathways were inhibited by CM as well as cell migration.

Our results suggest that cannabinoids could potentially have a beneficial effect on oral cancer therapy.”

https://pubmed.ncbi.nlm.nih.gov/36230847/

“The therapeutic efficacy of cannabis is very limited and still needs to be confirmed or refuted. However, our recent work has shown that at low doses, cannabinoids (Δ9-THC and Δ8-THC), which are the main constituents of cannabis, are beneficial against oral cancer. In this current study, we showed that a mixture of cannabinoids (CM) can induce oral toxicity in cells by damaging the DNA and activating the mechanisms of autophagy and apoptosis along with inhibiting many cancer progression pathways such as MAPKase, STATs and NF-κB pathways. These data demonstrated clearly the potential beneficial effect of CM at low concentrations for oral cancer therapy.”

https://www.mdpi.com/2072-6694/14/19/4924/htm

The Cytotoxic Effect of Isolated Cannabinoid Extracts on Polypoid Colorectal Tissue

ijms-logo

“Purified cannabinoids have been shown to prevent proliferation and induce apoptosis in colorectal carcinoma cell lines.

To assess the cytotoxic effect of cannabinoid extracts and purified cannabinoids on both colorectal polyps and normal colonic cells, as well as their synergistic interaction. Various blends were tested to identify the optimal synergistic effect.

Methods: Biopsies from polyps and healthy colonic tissue were obtained from 22 patients undergoing colonic polypectomies. The toxicity of a variety of cannabinoid extracts and purified cannabinoids at different concentrations was evaluated. The synergistic effect of cannabinoids was calculated based on the cells’ survival.

Isolated cannabinoids illustrated different toxic effects on the viability of cells derived from colorectal polyps. THC-d8 and THC-d9 were the most toxic and exhibited persistent toxicity in all the polyps tested. CBD was more toxic to polypoid cells in comparison to normal colonic cells at a concentration of 15 µM. The combinations of the cannabinoids CBDV, THCV, CBDVA, CBCA, and CBGA exhibited a synergistic inhibitory effect on the viability of cells derived from colon polyps of patients.

Isolated cannabinoid compounds interacted synergistically against colonic polyps, and some also possessed a differential toxic effect on polyp and adjacent colonic tissue, suggesting possible future therapeutic value.”

https://pubmed.ncbi.nlm.nih.gov/36232668/

“To conclude, our study results support the potential cytotoxic effect of cannabinoid extracts on colorectal polyps, as well as their synergistic and differential interactions. Further studies examining this postulation and the ultimate combination of cannabinoids for inhibiting/decreasing the recurrence rate of neoplastic polyps, and for preventing their malignant transformation into adenocarcinoma, are needed.”

https://www.mdpi.com/1422-0067/23/19/11366/htm

Evaluation of the anti-inflammatory effects of selected cannabinoids and terpenes from Cannabis Sativa L employing human primary leukocytes

Food and Chemical Toxicology

“Cannabis is well established as possessing immune modulating activity. The objective of this study was to evaluate the anti-inflammatory properties of selected cannabis-derived terpenes and cannabinoids. Based on their activity in cannabis-chemovar studies, α-pinene, trans-nerolidol, D-limonene, linalool and phytol were the selected terpenes evaluated. The cannabinoid compounds evaluated included cannabidivarin, cannabidiol, cannabinol, cannabichromene, cannabigerol and delta-9-tetrahydrocannabinol. Human PBMC were pretreated with each compound, individually, at concentrations extending from 0.001 to 10 μM and then stimulated with CpG (plasmacytoid dendritic cell), LPS (monocytes), or anti-CD3/CD28 (T cells). Proliferation, activation marker expression, cytokine production and phagocytosis, were quantified. Of the 21 responses assayed for each compound, cannabinoids showed the greatest immune modulating activity compared to their vehicle control. Delta-9-tetrahydrocannabinol possessed the greatest activity affecting 11 immune parameters followed by cannabidivarin, cannabigerol, cannabichromene, cannabinol and cannabidiol. α-Pinene showed the greatest immune modulating activity from the selected group of terpenes, followed by linalool, phytol, trans-nerolidol. Limonene had no effect on any of the parameters tested. Overall, these studies suggest that selected cannabis-derived terpenes displayed minimal immunological activity, while cannabinoids exhibited a broader range of activity. Compounds possessing anti-inflammatory effects may be useful in decreasing inflammation associated with a range of disorders, including neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/36228902/

https://www.sciencedirect.com/science/article/abs/pii/S0278691522006561?via%3Dihub

Therapeutic Effects of Medicinal Cannabinoids on the Gastrointestinal System in Pediatric Patients: A Systematic Review

View details for Cannabis and Cannabinoid Research cover image

“Changes in cannabis legalization have generated interest in medicinal cannabinoids for therapeutic uses, including those that target the gastrointestinal (GI) tract. These effects are mediated through interactions with the endocannabinoid system. Given the increasing societal awareness of the therapeutic potential of cannabinoids, it is important to ensure pediatric representation in clinical studies investigating cannabinoid use.

This systematic review aims to assess the efficacy of medicinal cannabinoids in treating GI symptoms in pediatric patients. A literature search of Medline, Embase, CINAHL, Web of Science, and the Cochrane Library was performed from inception until June 23, 2020. Study design, patient characteristics, type, dose and duration of medicinal cannabinoid therapy, and GI outcomes were extracted. From 7303 records identified, 5 studies met all inclusion criteria. Included studies focused on chemotherapy-induced nausea, inflammatory bowel disease, and GI symptoms associated with severe complex motor disorders.

Results varied based on the symptom being treated, the type of cannabinoid, and the patient population. Medicinal cannabinoids may have a potential role in treating specific GI symptoms in specific patient populations. The limited number and heterogenicity of included studies highlight the demand for future research to distinguish effects among different cannabinoid types and patient populations and to examine drug interactions. As interest increases, higher quality studies are needed to understand the efficacy of cannabinoids as a pediatric GI treatment and whether these benefits outweigh the associated risks (Registration Number: PROSPERO CRD42020202486).”

https://pubmed.ncbi.nlm.nih.gov/36219741/

https://www.liebertpub.com/doi/10.1089/can.2022.0192

Cannabinoid signaling modulation through JZL184 restores key phenotypes of a mouse model for Williams-Beuren syndrome

eLife logo

“Williams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS.

The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome.

We analyzed the components of the ECS in the complete deletion (CD) mouse model of WBS and assessed the impact of its pharmacological modulation in key phenotypes relevant for WBS. CD mice showed the characteristic hypersociable phenotype with no preference for social novelty and poor short-term object-recognition performance.

Brain cannabinoid type-1 receptor (CB1R) in CD male mice showed alterations in density and coupling with no detectable change in main endocannabinoids. Endocannabinoid signaling modulation with subchronic (10 days) JZL184, a selective inhibitor of monoacylglycerol lipase, specifically normalized the social and cognitive phenotype of CD mice. Notably, JZL184 treatment improved cardiovascular function and restored gene expression patterns in cardiac tissue.

These results reveal the modulation of the ECS as a promising novel therapeutic approach to improve key phenotypic alterations in WBS.”

https://pubmed.ncbi.nlm.nih.gov/36217821/

“Taken together, the results of this study are of great importance given the few preclinical studies addressing potential treatments for WBS. In this regard, the modulation of the ECS may be an appropriate novel therapeutic strategy to tackle not only the social phenotype but also memory shortfalls and cardiovascular deficits in WBS.”

https://elifesciences.org/articles/72560

[Activation of cannabinoid receptor 2 alleviates acute lung injury in rats with lipopolysaccharide-induced sepsis]

南方医科大学学报

“Objective: To investigate the protective effect of cannabinoid receptor 2 (CB2) activation against acute lung injury in rats with lipopolysaccharide (LPS)-induced sepsis and explore the underlying mechanism.

Results: The rat models of sepsis showed severe damage of alveolar structures with significantly decreased fluid clearance rate, lowered pulmonary expressions of CB2, occludin and ZO-1 mRNA and proteins, increased water content in the lung tissue, and increased phosphorylation level of P38 MAPK and TNF-α and IL-1β levels in lung lavage fluid (all P < 0.05). Treatment with JWH133 improved alveolar pathology in the septic rats, but there was still inflammatory infiltration; lung tissue water content, phosphorylation of P38 MAPK, and TNF-α and IL-1β levels in lung lavage fluid were all significantly decreased, and the fluid clearance rate, pulmonary expressions of CB2, occludin and ZO-1 were significantly increased (all P < 0.05). Additional treatment with SB203580 resulted in further improvements of alveolar pathologies, lowered phosphorylation levels of P38 MAPK in the lung tissue and TNF-α and IL-1β levels in lung lavage fluid, and increased the protein expressions of occludin and ZO-1 (P < 0.05) without causing significant changes in mRNA and protein expression of CB2 (P > 0.05).

Conclusion: In rats with LPS-induced sepsis, activation of CB2 can inhibit the p38 MAPK signaling pathway, reduce the release of inflammatory factors in the lung tissues, promote tight junction protein expressions, and thus offer protection against acute lung injury.”

https://pubmed.ncbi.nlm.nih.gov/36210711/

https://www.j-smu.com/CN/10.12122/j.issn.1673-4254.2022.09.14

Evaluating Cannabis sativa L.’s neuroprotection potential: From bench to bedside

Phytomedicine

“Background: Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer’s disease. Although several approved treatments exist for Alzheimer’s disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases.

Purpose: This review evaluated the neuroprotective potential of C. sativa’s active constituents for potential therapeutic use in dementia and Alzheimer’s disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration.

Study design: Relevant information on the neuroprotective potential of the C. sativa’s phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa’s component bioactivity was organized for therapeutic applications against neurodegenerative diseases.

Methods: The therapeutic use of C. sativa related to Alzheimer’s disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals.

Results: Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer’s disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer’s disease, amyloid β.

Conclusions: These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.”

https://pubmed.ncbi.nlm.nih.gov/36209703/

https://www.sciencedirect.com/science/article/abs/pii/S0944711322005748?via%3Dihub

Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases

Frontiers - Crunchbase Company Profile & Funding

“Cannabis preparations are gaining popularity among patients with various skin diseases. Due to the lack of scientific evidence, dermatologists remain cautious about their prescriptions. So far, only a few studies have been published about the effects of high-potency cannabis extracts on microorganisms (especially dermatophytes) causing skin problems that affect more than 25% of the worldwide population. Even though, the high-potency cannabis extracts prepared by cold extraction are mostly composed of non-psychoactive tetrahydrocannabinolic acid (THCA) and only low amount of THC, their use in topical treatment can be stigmatized. The in vitro antimicrobial and antifungal activity of two high potent cannabis strains extracted by three solvents traditionally or currently used by cannabis users (ethanol; EtOH, butane; BUT, dimethyl ether; DME) was investigated by broth dilution method. The chemical profile of cannabis was determined by high-performance liquid chromatography with ultraviolet detection and gas chromatography with mass spectrometer and flame ionization detector. The extraction methods significantly influenced chemical profile of extracts. The yield of EtOH extracts contained less cannabinoids and terpenes compared to BUT and DME ones. Most of the extracts was predominantly (>60%) composed of various cannabinoids, especially THCA. All of them demonstrated activity against 18 of the 19 microorganisms tested. The minimal inhibitory concentrations (MICs) of the extracts ranged from 4 to 256 μg/mL. In general, the bacteria were more susceptible to the extracts than dermatophytes. Due to the lower content of biologically active substances, the EtOH extracts were less effective against microorganisms. Cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms. Therefore, they could serve as an alternative or supportive treatment to commonly used antibiotics.”

https://pubmed.ncbi.nlm.nih.gov/36204633/

“Our research brought new evidence that cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms and showed that cannabis could serve as an alternative or supportive treatment to commonly used antibiotics.”

https://www.frontiersin.org/articles/10.3389/fmicb.2022.953092/full