[Medical cannabis]

“Health is a human right. In order to guarantee that right, it is fundamental that all activities concerning health in different contexts (clinical, research, teaching) contribute to the construction of an efficient system that promotes excellence, equity, justice, and solidarity. In this issue, we take on alternatives regarding the use of medical cannabis from this perspective. Health research and its contribution to knowledge – in particular with respect to the development of new pharmaceuticals – represents not only a challenge related to technology and production, but also an opportunity for ensuring the autonomy of the health system.”

https://pubmed.ncbi.nlm.nih.gov/35900986/

http://revistas.unla.edu.ar/saludcolectiva/article/view/3991

Cannabis use does not increase actual creativity but biases evaluations of creativity

Cover image for Journal of Applied Psychology

“In this research, we examine the effects of cannabis use on creativity and evaluations of creativity. Drawing on both the broaden-and-build theory and the affect-as-information model, we propose that cannabis use would facilitate more creativity as well as more favorable evaluations of creativity via cannabis-induced joviality. We tested this prediction in two experiments, wherein participants were randomly assigned to either a cannabis use or cannabis abstinence condition.

We find support for our prediction that cannabis use facilitates joviality, which translates to more favorable evaluations of creativity of one’s own ideas and others’ ideas. However, our prediction that cannabis use facilitates creativity via joviality was not supported. Our findings suggest that cannabis use may positively bias evaluations of creativity but have no impact on creativity. Implications for theory and practice are discussed.”

https://pubmed.ncbi.nlm.nih.gov/35901408/

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fapl0000599

Estimating the effects of legalizing recreational cannabis on newly incident cannabis use

Plos One | Publons

“Liberalized state-level recreational cannabis policies in the United States (US) fostered important policy evaluations with a focus on epidemiological parameters such as proportions [e.g., active cannabis use prevalence; cannabis use disorder (CUD) prevalence].

This cannabis policy evaluation project adds novel evidence on a neglected parameter-namely, estimated occurrence of newly incident cannabis use for underage (<21 years) versus older adults. The project’s study populations were specified to yield nationally representative estimates for all 51 major US jurisdictions, with probability sample totals of 819,543 non-institutionalized US civilian residents between 2008 and 2019. Standardized items to measure cannabis onsets are from audio computer-assisted self-interviews. Policy effect estimates are from event study difference-in-difference (DiD) models that allow for causal inference when policy implementation is staggered.

The evidence indicates no policy-associated changes in the occurrence of newly incident cannabis onsets for underage persons, but an increased occurrence of newly onset cannabis use among older adults (i.e., >21 years). We offer a tentative conclusion of public health importance: Legalized cannabis retail sales might be followed by the increased occurrence of cannabis onsets for older adults, but not for underage persons who cannot buy cannabis products in a retail outlet.

Cannabis policy research does not yet qualify as a mature science. We argue that modeling newly incident cannabis use might be more informative than the modeling of prevalences when evaluating policy effects and provide evidence of the advantages of the event study model over regression methods that seek to adjust for confounding factors.”

https://pubmed.ncbi.nlm.nih.gov/35862417/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271720


Anti-Tumorigenic Effect of a Novel Derivative of 2-Hydroxyoleic Acid and the Endocannabinoid Anandamide on Neuroblastoma Cells

biomedicines-logo

“Modulation of the endogenous cannabinoid system has been suggested as a potential anticancer strategy.

In the search for novel and less toxic therapeutic options, structural modifications of the endocannabinoid anandamide and the synthetic derivative of oleic acid, Minerval (HU-600), were done to obtain 2-hydroxy oleic acid ethanolamide (HU-585), which is an HU-600 derivative with the anandamide side chain.

We showed that treatment of SK-N-SH neuroblastoma cells with HU-585 induced a better anti-tumorigenic effect in comparison to HU-600 as evidenced by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assay, colony-forming assay, and migration assay. Moreover, HU-585 demonstrated pro-apoptotic properties shown by increased levels of activated caspase-3 following treatment and a better senescence induction effect in comparison to HU-600, as demonstrated by increased activity of lysosomal β-galactosidase. Finally, we observed that combined treatment of HU-585 with the senolytic drugs ABT-263 in vitro, and ABT-737 in vivo resulted in enhanced anti-proliferative effects and reduced neuroblastoma xenograft growth in comparison to treatment with HU-585 alone.

Based on these results, we suggest that HU-585 is a pro-apoptotic and senescence-inducing compound, better than HU-600. Hence, it may be a beneficial option for the treatment of resistant neuroblastoma especially when combined with senolytic drugs that enhance its anti-tumorigenic effects.”

https://pubmed.ncbi.nlm.nih.gov/35884854/

“The cannabinoids are a group of more than 100 chemically related compounds found in the marijuana plant Cannabis sativa, that have been found to possess diverse pharmacological activities in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Tetrahydrocannabinol (THC), the main psychoactive constituent in Cannabis sativa, acts mainly through the activation of specific cannabinoid receptors CB1 and CB2 and thus mimics the binding of the animal endogenous cannabinoids (named endocannabinoids).”

https://www.mdpi.com/2227-9059/10/7/1552/htm

Activation of Peripheral Cannabinoid Receptors Synergizes the Effect of Systemic Ibuprofen in a Pain Model in Rat

pharmaceuticals-logo

“Pharmacological synergism is a current strategy for the treatment of pain. However, few studies have been explored to provide evidence of the possible synergism between a non-steroidal anti-inflammatory drug (NSAID) and a cannabinoid agonist, in order to establish which combinations might be effective to manage pain.

The aim of this study was to explore the synergism between ibuprofen (IBU) and the synthetic cannabinoid WIN 55,212-2 (WIN) to improve pain relief by analyzing the degree of participation of the CB1 and CB2 cannabinoid receptors in the possible antinociceptive synergism using an experimental model of pain in Wistar rats.

First, the effective dose thirty (ED30) of IBU (10, 40, 80, and 160 mg/kg, subcutaneous) and WIN (3, 10, and 30 µg/p, intraplantar) were evaluated in the formalin test. Then, the constant ratio method was used to calculate the doses of IBU and WIN to be administered in combination (COMB) to determine the possible synergism using the isobolographic method. The participation of the CB1 and CB2 receptors was explored in the presence of the antagonists AM281 and AM630, respectively.

The combination of these drugs produced a supra-additive response with an interaction index of 0.13. In addition, AM281 and AM630 antagonists reversed the synergistic effect in 45% and 76%, respectively, suggesting that both cannabinoid receptors are involved in this synergism, with peripheral receptors playing a relevant role.

In conclusion, the combination of IBU + WIN synergism is mainly mediated by the participation of the CB2 receptor, which can be a good option for the better management of pain relief.”

https://pubmed.ncbi.nlm.nih.gov/35893735/

https://www.mdpi.com/1424-8247/15/8/910

Differential Effects of D9 Tetrahydrocannabinol (THC)- and Cannabidiol (CBD)-Based Cannabinoid Treatments on Macrophage Immune Function In Vitro and on Gastrointestinal Inflammation in a Murine Model

biomedicines-logo

“Phytocannabinoids possess a wide range of immune regulatory properties, mediated by the endocannabinoid system.

Monocyte/macrophage innate immune cells express endocannabinoid receptors. Dysregulation of macrophage function is involved in the pathogenesis of different inflammatory diseases, including inflammatory bowel disease.

In our research, we aimed to evaluate the effects of the phytocannabinoids D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on macrophage activation.

Macrophages from young and aged C57BL/6 mice were activated in vitro in the presence of pure cannabinoids or cannabis extracts. The phenotype of the cells, nitric oxide (NO•) secretion, and cytokine secretion were examined. In addition, these treatments were administered to murine colitis model. The clinical statuses of mice, levels of colon infiltrating macrophages, and inflammatory cytokines in the blood, were evaluated.

We demonstrated inhibition of macrophage NO• and cytokine secretion and significant effects on expression of cell surface molecules. In the murine model, clinical scores were improved and macrophage colon infiltration reduced following treatment. We identified higher activity of cannabis extracts as compared with pure cannabinoids. Each treatment had a unique effect on cytokine composition.

Overall, our results establish that the effects of cannabinoid treatments differ. A better understanding of the reciprocal relationship between cannabinoids and immunity is essential to design targeted treatment strategies.”

https://pubmed.ncbi.nlm.nih.gov/35892693/

“Overall, our results indicate both similarities and differences between the impact of CBD- and THC-based drugs. Although all the tested treatments had an anti-inflammatory effect, their specific effects (for example, on phenotype of the cells and on cytokine production) differed. These differences may influence the clinical outcome of the treatment. We were surprised to find very similar anti-inflammatory results for the two cannabis extracts, which had diverse content of THC and CBD. This could suggest that THC/CBD content may not be the best indicator for anti-inflammatory properties of a cannabis-based drug. These results highlight the need to expand the research on the interplay between cannabinoids and other phytochemicals in the cannabis extracts. A better understanding of the effects of each molecule and the synergism between these molecules on the immune response will assist physicians to provide the best possible individually targeted treatment for their patients and will allow the design of new treatments.”

https://www.mdpi.com/2227-9059/10/8/1793/htm

Anti-cancer properties of cannflavin A and potential synergistic effects with gemcitabine, cisplatin, and cannabinoids in bladder cancer

“Introduction: Several studies have shown anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of most compounds present in cannabis in bladder cancer and how these compounds could potentially positively or negatively impact the actions of chemotherapeutic agents. Our study aims to evaluate the effects of a compound found in Cannabis sativa that has not been extensively studied to date, cannflavin A, in bladder cancer cell lines. We aimed to identify whether cannflavin A co-treatment with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, is able to produce synergistic effects. We also evaluated whether co-treatment of cannflavin A with various cannabinoids could produce synergistic effects.

Results: Cell viability of bladder cancer cell lines was affected in a concentration-dependent fashion in response to cannflavin A, and its combination with gemcitabine or cisplatin induced differential responses-from antagonistic to additive-and synergism was also observed in some instances, depending on the concentrations and drugs used. Cannflavin A also activated apoptosis via caspase 3 cleavage and was able to reduce invasion by 50%. Interestingly, cannflavin A displayed synergistic properties with other cannabinoids like Δ9-tetrahydrocannabinol, cannabidiol, cannabichromene, and cannabivarin in the bladder cancer cell lines.

Discussion: Our results indicate that compounds from Cannabis sativa other than cannabinoids, like the flavonoid cannflavin A, can be cytotoxic to human bladder transitional carcinoma cells and that this compound can exert synergistic effects when combined with other agents. In vivo studies will be needed to confirm the activity of cannflavin A as a potential agent for bladder cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/35869542/

“A study recently demonstrated that the combination of Δ9-tetrahydrocannabinol and cannabichromene produced synergistic effects in a bladder cancer model, while another focused on the effects of cannabidiol and their potential formulation within nanoparticles to treat bladder cancer. Here, we show that other compounds from cannabis, like cannflavin A, may also induce beneficial cytotoxic and synergistic effects on bladder cancer cells. Our results also showed the ability of cannabinoids, other than Δ9-tetrahydrocannabinol, to produce synergistic effects when combined with the flavonoid cannflavin A.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-022-00151-y


The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination

Pulmonary Pharmacology & Therapeutics

“Introduction/background and purpose: Studies with Cannabis Sativa plant extracts and endogenous agonists of cannabinoid receptors have demonstrated anti-inflammatory, bronchodilator, and antitussive properties in the airways of allergic and non-allergic animals. However, the potential therapeutic use of cannabis and cannabinoids for the treatment of respiratory diseases has not been widely investigated, in part because of local irritation of airways by needing to smoke the cannabis, poor bioavailability when administered orally due to the lipophilic nature of cannabinoids, and the psychoactive effects of Δ9-Tetrahydrocannabinol (Δ9-THC) found in cannabis. The primary purpose of this study was to investigate the anti-inflammatory effects of two of the non-psychotropic cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) alone and in combination, in a model of pulmonary inflammation induced by bacterial lipopolysaccharide (LPS). The second purpose was to explore the effects of two different cannabinoid formulations administered orally (PO) and intraperitoneally (IP). Medium-chain triglyceride (MCT) oil was used as the sole solvent for one formulation, whereas the second formulation consisted of a Cremophor® EL (polyoxyl 35 castor oil, CrEL)-based micellar solution.

Results: Exposure of guinea pigs to LPS induced a 97 ± 7% and 98 ± 3% increase in neutrophils found in bronchoalveolar lavage fluid (BAL) at 4 h and 24 h, respectively. Administration of CBD and CBG formulated with MCT oil did not show any significant effects on the LPS-induced neutrophilia measured in the BAL fluid when compared with the vehicle-treated groups. Conversely, the administration of either cannabinoid formulated with CrEL induced a significant attenuation of the LPS induced recruitment of neutrophils into the lung following both intraperitoneal (IP) and oral (PO) administration routes, with a 55-65% and 50-55% decrease in neutrophil cell recruitment with the highest doses of CBD and CBG respectively. A combination of CBD and CBG (CBD:CBG = 1:1) formulated in CrEL and administered orally was also tested to determine possible interactions between the cannabinoids. However, a mixture of CBD and CBG did not show a significant change in LPS-induced neutrophilia. Surfactants, such as CrEL, improves the dissolution of lipophilic drugs in an aqueous medium by forming micelles and entrapping the drug molecules within them, consequently increasing the drug dissolution rate. Additionally, surfactants increase permeability and absorption by disrupting the structural organisation of the cellular lipid bilayer.

Conclusion: In conclusion, this study has provided evidence that CBD and CBG formulated appropriately exhibit anti-inflammatory activity. Our observations suggest that these non-psychoactive cannabinoids may have beneficial effects in treating diseases characterised by airway inflammation.”

https://pubmed.ncbi.nlm.nih.gov/34082108/

“The discovery of the endocannabinoid system (ECS) has enabled the growth of scientific evidence supporting the use of cannabis and cannabinoids as therapeutic agents for various diseases.

Various studies have suggested the use of cannabinoids as possible treatments for inflammatory diseases”

https://www.sciencedirect.com/science/article/abs/pii/S1094553921000596?via%3Dihub

Cannabinoids for the Treatment of Dermatologic Conditions

“In recent years, cannabinoid (CB) products have gained popularity among the public. The anti-inflammatory properties of CBs have piqued the interest of researchers and clinicians because they represent promising avenues for the treatment of autoimmune and inflammatory skin disorders that may be refractory to conventional therapy.

The objective of this study was to review the existing literature regarding CBs for dermatologic conditions.

There were 13 articles on systemic CBs and 14 reports on topical CBs. Selective CB receptor type 2 agonists were found to be effective in treating diffuse cutaneous systemic sclerosis and dermatomyositis. Dronabinol showed efficacy for trichotillomania. Sublingual cannabidiol and Δ-9-tetrahydrocannabinol were successful in treating the pain associated with epidermolysis bullosa.

Available evidence suggests that CBs may be effective for the treatment of various inflammatory skin disorders. Although promising, additional research is necessary to evaluate efficacy and to determine dosing, safety, and long-term treatment guidelines.”

https://pubmed.ncbi.nlm.nih.gov/35199092/

“In conclusion, both oral and topical CBs appear to be promising therapies for the treatment of various inflammatory and autoimmune skin disorders. Despite limited studies, the compilation of current evidence from the published literature supports the utility of topical and systemic CBs for the treatment of primary inflammatory skin disorders such as DM, diffuse cutaneous systemic sclerosis, atopic dermatitis, leg ulcers, and epidermolysis bullosa.”

https://www.jidinnovations.org/article/S2667-0267(22)00001-7/fulltext


α-Glucosidase inhibitory activity of cannabidiol, tetrahydrocannabinol and standardized cannabinoid extracts from Cannabis sativa

Current Research in Food Science

“Two major cannabinoids of cannabis, namely cannabidiol (CBD) and tetrahydrocannabinol (THC) have been reportedly used as alternative medicine for diabetes treatment in both pre-clinical and clinical research. However, their mechanisms of action still remain unclear. Therefore, this study aimed to evaluate the α-glucosidase inhibitory activity of THC, CBD and the standardized cannabinoid extracts.

Based on in silico studies, THC generated hydrogen bonding and Van der Waals interactions, while CBD exhibited only Van der Waals interactions with functional residues of target α-glucosidase protein, with good binding energies of -7.5 and -6.9 kcal/mol, respectively. In addition, both of them showed excellent pharmacokinetic profiles with minor toxicity in terms of tumorigenic and reproductive effects. In addition, the enzyme based in vitro assay on α-glucosidase revealed that THC and CBD exhibited good inhibitory activity, with the IC50 values of 3.0 ± 0.37 and 5.5 ± 0.28 μg/ml, respectively.

These were better than the standard drug, acarbose (IC50 of 488.6 ± 10.23 μg/ml).

Furthermore, two standardized cannabinoid extracts, SCE-I (C. sativa leaf extract) and SCE-II (C. sativa inflorescence extract) exhibited stronger inhibitory activity than THC and CBD, with the IC50 values of 1.2 ± 0.62 and 0.16 ± 0.01 μg/ml, respectively.

The present study provides the first evidence that the standardized cannabinoid extracts containing THC and CBD have greater potential than CBD and THC in application as an α-glucosidase inhibitor.”

https://pubmed.ncbi.nlm.nih.gov/35856057/

https://www.sciencedirect.com/science/article/pii/S2665927122001046?via%3Dihub