The Combination of Δ 9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins

cancers-logo

“Phytocannabinoids represent a promising approach in glioblastoma therapy.

Previous work has shown that a combined treatment of glioblastoma cells with submaximal effective concentrations of psychoactive Δ9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD) greatly increases cell death.

In the present work, the glioblastoma cell lines U251MG and U138MG were used to investigate whether the combination of THC and CBD in a 1:1 ratio is associated with a disruption of cellular energy metabolism, and whether this is caused by affecting mitochondrial respiration.

Here, the combined administration of THC and CBD (2.5 µM each) led to an inhibition of oxygen consumption rate and energy metabolism. These effects were accompanied by morphological changes to the mitochondria, a release of mitochondrial cytochrome c into the cytosol and a marked reduction in subunits of electron transport chain complexes I (NDUFA9, NDUFB8) and IV (COX2, COX4). Experiments with receptor antagonists and inhibitors showed that the degradation of NDUFA9 occurred independently of the activation of the cannabinoid receptors CB1, CB2 and TRPV1 and of usual degradation processes mediated via autophagy or the proteasomal system.

In summary, the results describe a previously unknown mitochondria-targeting mechanism behind the toxic effect of THC and CBD on glioblastoma cells that should be considered in future cancer therapy, especially in combination strategies with other chemotherapeutics.”

https://pubmed.ncbi.nlm.nih.gov/35804909/

“Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L. that exhibits no psychoactivity and, like the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC), shows anticancer effects in preclinical cell and animal models. Previous studies have indicated a stronger cancer-targeting effect when THC and CBD are combined. Here, we investigated how the combination of THC and CBD in a 1:1 ratio affects glioblastoma cell survival. The compounds were found to synergistically enhance cell death, which was attributed to mitochondrial damage and disruption of energy metabolism. A detailed look at the mitochondrial electron transfer chain showed that THC/CBD selectively decreased certain subunits of complexes I and IV. These data highlight the fundamental changes in cellular energy metabolism when cancer cells are exposed to a mixture of cannabinoids and underscore the potential of combining cannabinoids in cancer treatment.”

https://www.mdpi.com/2072-6694/14/13/3129


Therapeutic Potential of Cannabinoids on Tumor Microenvironment: A Molecular Switch in Neoplasia Transformation

“The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis.

Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in Cannabis sativa L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management.

Although the anticancer potential of C. sativa, has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors.

In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment.

This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/35796303/

“Cannabis sativa L. is a natural source of valuable compounds that comprise cannabinoid agonists and antagonists, which have recently been scanned for future applications as anti-tumor drugs. Cannabinoids have mostly been used as a part of palliative care to alleviate pain, relieve nausea, and stimulate appetite in cancer patients. Although not yet approved for treating tumor progression, cannabinoid agonist/antagonists on the tumor microenvironment have been studied for the last 43 years. Research on cannabinoids and their potential therapeutic function has been ongoing since 1971. Numerous in vitro and in vivo studies have demonstrated the anti-cancer effects of cannabinoids in various cancer types.”

https://journals.sagepub.com/doi/10.1177/15347354221096766


Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions

SpringerLink

“Combination tetrahydrocannabinol (THC)/cannabidiol (CBD) medicines or CBD-only medicines are prospective treatments for chronic pain, stress, anxiety, depression, and insomnia. THC and CBD increase signaling from cannabinoid receptors, which reduces synaptic transmission in parts of the central and peripheral nervous systems and reduces the secretion of inflammatory factors from immune and glial cells.

The overall effect of adding CBD to THC medicines is to enhance the analgesic effect but counteract some of the adverse effects. There is substantial evidence for the effectiveness of THC/CBD combination medicines for chronic pain, especially neuropathic and nociplastic pain or pain with an inflammatory component. For CBD-only medication, there is substantial evidence for stress, moderate evidence for anxiety and insomnia, and minimal evidence for depression and pain.

THC/CBD combination medicines have a good tolerability and safety profile relative to opioid analgesics and have negligible dependence and abuse potential; however, should be avoided in patients predisposed to depression, psychosis and suicide as these conditions appear to be exacerbated. Non-serious adverse events are usually dose-proportional, subject to tachyphylaxis and are rarely dose limiting when patients are commenced on a low dose with gradual up-titration. THC and CBD inhibit several Phase I and II metabolism enzymes, which increases the exposure to a wide range of drugs and appropriate care needs to be taken. Low-dose CBD that appears effective for chronic pain and mental health has good tolerability and safety, with few adverse effects and is appropriate as an initial treatment.”

https://pubmed.ncbi.nlm.nih.gov/35796920/

“Tetrahydrocannabinol (THC) and cannabidiol (CBD) combination medicines and CBD-only medicines are prospective new treatments for chronic pain, stress, anxiety, depression, and insomnia, which are all medical conditions in need of better therapeutics. Both THC/CBD combination and CBD-only medicines could provide effective new treatment options for pain and mental health, respectively, and both have good safety and tolerability profiles relative to the current treatments.

THC and CBD combination medicines have a good safety and tolerability profile that is appropriate for opioid stage (stage 2–3) treatment of chronic pain. Low-dose CBD could be used as an initial treatment for chronic pain and for stress, anxiety, depression, and insomnia. High quality efficacy evidence is best for THC/CBD combination medicines for chronic pain and CBD-only medicines for stress and anxiety. “

https://link.springer.com/article/10.1007/s10787-022-01020-z

Patient Experience and Perspective on Medical Cannabis as an Alternative for Musculoskeletal Pain Management

JAAOS - Journal of the American Academy of Orthopaedic Surgeons

“Introduction: The current rate of opioid prescription is disquieting because of their high abuse potential, adverse effects, and thousands of overdose deaths. This situation imposes urgency in seeking alternatives for adequate pain management. From this perspective, this study aimed to evaluate the experience and the perceived analgesic efficacy of medical cannabis in managing the pain associated with musculoskeletal conditions.

Methods: A 28-question survey was distributed to patients at a major medical cannabis center in Puerto Rico for 2 months. Demographics, medical history, cannabis usage, cannabis use perspective, and analgesic efficacy were assessed in the questionnaire.

Results: One hundred eighty-four patients completed our survey. The majority (67%) were males, and the participants’ average age was 38 years. This study showed an average pain reduction score of 4.02 points on the Numeric Rating Scale among all the participants. Those with musculoskeletal conditions reported a notable average pain reduction score of 4.47 points. In addition, 89% of the participants considered medical cannabis to be more effective than narcotics for adequate pain management.

Conclusions: This study demonstrated that the use of medical cannabis among patients with musculoskeletal conditions effectively reduced pain levels based on their Numeric Rating Scale reported scores.”

https://pubmed.ncbi.nlm.nih.gov/35796526/

“This study showed that the use of medical cannabis among patients with musculoskeletal conditions effectively reduced pain levels based on their NRS reported scores. In addition, most patients using medical cannabis considered that this drug represents a better option than narcotics (ie, opioids) for adequate pain management.”

https://journals.lww.com/jaaosglobal/Fulltext/2022/07000/Patient_Experience_and_Perspective_on_Medical.6.aspx

Cannabis: Chemistry, extraction and therapeutic applications

Chemosphere

“Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer’s disease, Parkinson’s disease, to name a few.

This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes.

The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities.

The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided.

This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.”

https://pubmed.ncbi.nlm.nih.gov/34838836/

“Cannabinoids have therapeutic effects against various health disorders.•

Medicinal effects are due to the interactions of cannabinoids with bio-receptors.•

Cannabinoids can be extracted from Cannabis plant products by eco-friendly extraction methods.”

https://www.sciencedirect.com/science/article/abs/pii/S0045653521034846?via%3Dihub

Image 1


Cannabinoid 1 and mu-opioid receptor agonists synergistically inhibit abdominal pain and lack side effects in mice

Society for Neuroscience - Publications

“While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence.

We aimed to investigate if cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses.

Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated dorsal root ganglion (DRG) neurons. Blood oxygen saturation, locomotion and defecation were measured to evaluate side effects.

An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2′-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity or DRG neuron excitability.

Combination of sub-analgesic doses of CB1R and µ-opioid receptor (MOR) agonists decreased VMR; importantly, this analgesic effect was preserved after 6 days of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase (nNOS) and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with MOR.

Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.

SIGNIFICANCE STATEMENTOne of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of sub-analgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.”

https://pubmed.ncbi.nlm.nih.gov/35790401/


A Randomized, Triple-Blind, Comparator-Controlled Parallel Study Investigating the Pharmacokinetics of Cannabidiol and Tetrahydrocannabinol in a Novel Delivery System, Solutech, in Association with Cannabis Use History

View details for Cannabis and Cannabinoid Research cover image

“Background: An oral route of administration for tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) eliminates the harmful effects of smoking and has potential for efficacious cannabis delivery for therapeutic and recreational applications. We investigated the pharmacokinetics of CBD, Δ9-THC, 11-OH-THC, and 11-nor-9-carboxy-Δ9-THC (THC-COOH) in a novel oral delivery system, Solutech™, compared to medium-chain triglyceride-diluted cannabis oil (MCT-oil) in a healthy population. 

Materials and Methods: Thirty-two participants were randomized and divided into two study arms employing a comparator-controlled, parallel-study design. To evaluate the pharmacokinetics of Δ9-THC, CBD, 11-OH-THC, and THC-COOH, blood was collected at pre-dose (t=0) and 10, 20, 30, and 45, min and 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 12, 24, and 48 h post-dose after a single dose of Solutech (10.0 mg Δ9-THC, 9.76 mg CBD) or MCT (10.0 mg Δ9-THC, 9.92 mg CBD). Heart rate and blood pressure were measured at 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h. Relationships between cannabis use history, body mass index, sex, and pharmacokinetic parameters were investigated. Safety was assessed before and at 48 h post-acute dose. 

Results: Acute consumption of Solutech provided a significantly greater maximum concentration (Cmax), larger elimination and absorption rate constants, faster time to Cmax and lag time, and half-life for all analytes compared to MCT-oil (p<0.001). In addition, cannabis use history had a significant influence on the pharmacokinetic parameters of CBD, Δ9-THC, 11-OH-THC, and THC-COOH. On average, participants with later age of first use had higher Δ9-THC, CBD, and THC-COOH Cmax and later time-to-Cmax and half-life for Δ9-THC, CBD, THC-COOH, and 11-OH-THC than those with earlier age of first use (p≤0.032). Those with more years of recreational cannabis use had higher area under the curve for Δ9-THC and CBD, Cmax for CBD, and longer 11-OH-THC half-life than those with less (p≤0.048). 

Conclusion: This study demonstrated that consumption of Solutech enhanced most pharmacokinetics parameters measured compared to MCT-oil. Participant’s cannabis use history, including their age of first use and number of years using cannabis significantly impacted pharmacokinetic parameters investigated. Acute consumption of both products was found to be safe and well tolerated. The results suggest that Solutech may optimize bioavailability from cannabis formulations.”

https://pubmed.ncbi.nlm.nih.gov/35787693/

https://www.liebertpub.com/doi/10.1089/can.2021.0176

Vascular responses disrupted by fructose-induced hyperinsulinemia improved with delta-9- tetrahydrocannabinol

“Objectives: In recent years, cannabinoids have been shown to have beneficial effects on diabetic vascular complications.

Vascular complications due to fructose-induced hyperinsulinemia (HI) and diabetic vascular complications have similar mechanisms.

The aim of this experimental study was to observe whether the cannabinoid agonist delta-9-tetrahydrocannabinol (THC) has an ameliorating effect on fructose-induced HI and vascular responses in the aortic ringof rats with HI.

Methods: A total of 24 rats were categorized into 4 groups: control (standard food pellets and water), HI (water containing 10% fructose provided for 12 weeks), THC (1.5 mg/kg/day intraperitoneal administration for 4 weeks), and THC+HI.Body weight was measured again on the last day of the study and the serum insulin level was measured with an enzyme-linked immunosorbent assay. The acetylcholine (ACh) maximum relaxant effect in aortic rings pre-contractedwith noradrenaline (NA) was evaluated.

Results: The body weight of THC and THC+HI groups was lower compared with that of the controls (p<0.01). Increasedinsulin level as a result of fructose consumption decreased with THC administration (p<0.01) while the glucose level increased in all other groups compared with the control group (p<0.01, p<0.05). The NA Emax value decreased in thegroup receiving THC treatment (p<0.01). The increased ACh pD2 value in the HI groups also decreased in the THCtreatment group (p<0.0001). The decreased maximum inhibition value in the HI group increased significantly with THC administration (p<0.001).

Conclusion: THC demonstrated beneficial effects on fructose-induced HI. THC improved ACh-induced endothelialdependent relaxation in HI rat aortic rings.”

http://acikerisim.demiroglu.bilim.edu.tr:8080/xmlui/handle/11446/4516

https://internationalbiochemistry.com/jvi.aspx?un=IJMB-83703&volume=

The protective effects of Δ 9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia

“Objectives: A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications. The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

Methods: Sprague-Dawley rats were divided into groups: control, fructose (10% fructose in drinking water for 12 weeks), THC (1.5 mg/kg/day for the last 4 weeks, intraperitoneally) and fructose+THC groups. Biochemical parameters were measured spectrophotometrically. ELISA method was used for insulin measurement. Apoptosis and inflammation markers were detected by the streptavidin-biotin peroxidase method.

Key findings: The consumptions of food and fluid are inversely proportional to fructose and non-fructose groups. Insulin levels were the highest in fructose group. The reduced glutathione-S-transferase level significantly increased in fructose + THC group compared with fructose group. Total cholesterol level in the fructose + THC group was higher than the fructose group. Caspase-3 and NF-κβ immunopositive cell numbers increased in fructose + THC rats compared with fructose group. The number of IL-6 immunopositive cell decreased in fructose + THC group compared with fructose group.

Conclusions: According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

https://pubmed.ncbi.nlm.nih.gov/30427077/

“Taken together, the findings from this study demonstrate that fructose consumption induces hyperinsulinemia, oxidative stress and inflammation in rats. The long-term and low-dose THC administration may prevent hyperinsulinemia and inflammation to some extent.”

https://academic.oup.com/jpp/article/71/3/408/6122105?login=false


Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization

Scientific Reports

“Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects.

However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems.

In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye.

Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms.

Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.”

https://pubmed.ncbi.nlm.nih.gov/35079042/

“The potential therapeutic applications of marijuana, firstly reported in 1997 by the National Institutes of Health (NIH, USA), are attributed to a great extent to its main component, Δ9-tetrahydrocannabinol (Δ9-THC)1. This cannabinoid continues to attract special attention in oncology due to its palliative effects and antitumor activity; Δ9-THC has been reported to inhibit tumor angiogenesis and cell growth in malignant tissues, leading to cell death.”

“Δ9-THC has been reported to inhibit tumor angiogenesis and cell growth in malignant tissues.”

“Overall, Tf-modification of PLGA NPs seemed a highly promising approach for Δ9-THC-based antitumor therapies, aiming at a prolonged action of the carrier at the target cell surface. Moreover, the translation of this strategy to the delivery of alternative active pharmaceutical ingredients with pharmacological targets on the surface of cells could lead to advances in related therapies.”

https://www.nature.com/articles/s41598-022-05301-z