In Vitro Effect of Δ9-Tetrahydrocannabinol and Cannabidiol on Cancer-Associated Fibroblasts Isolated from Lung Cancer

ijms-logo

“There is evidence that demonstrates the effect of cannabinoid agonists inhibiting relevant aspects in lung cancer, such as proliferation or epithelial-to-mesenchymal transition (EMT).

Most of these studies are based on evidence observed in in vitro models developed on cancer cell lines. These studies do not consider the complexity of the tumor microenvironment (TME). One of the main components of the TME is cancer-associated fibroblasts (CAFs), cells that are relevant in the control of proliferation and metastasis in lung cancer.

In this work, we evaluated the direct effects of two cannabinoid agonists, tetrahydrocannabinol (THC) and cannabidiol (CBD), used alone or in combination, on CAFs and non-tumor normal fibroblasts (NFs) isolated from adenocarcinoma or from healthy lung tissue from the same patients.

We observed that these compounds decrease cell density in vitro and inhibit the increase in the relative expression of type 1 collagen (COL1A1) and fibroblast-specific protein 1 (FSP1) induced by transforming growth factor beta (TGFβ). On the other hand, we studied whether THC and CBD could modulate the interactions between CAFs or NFs and cancer cells. We conditioned the culture medium with stromal cells treated or not with THC and/or CBD and cultured A549 cells with them.

We found that culture media conditioned with CAFs or NFs increased cell density, induced morphological changes consistent with EMT, inhibited cadherin-1 (CDH1) gene expression, and induced an increase in the relative expression of cadherin-2 (CDH2) and vimentin (VIM) genes in A549 cells. These changes were inhibited or decreased by THC and CBD administered alone or in combination. In another series of experiments, we conditioned culture media with A549 cells treated or not with THC and/or CBD, in the presence or absence of TGFβ. We observed that culture media conditioned with A549 in the presence of TGFβ induced an increase in the expression of COL1A1 and VIM, both in CAFs and in non-tumor NFs. Both THC and CBD ameliorated these effects.

In summary, the results presented here reinforce the usefulness of cannabinoid agonists for the treatment of some relevant aspects of lung cancer pathology, and demonstrate in a novel way their possible effects on CAFs as a result of their relationship with cancer cells. Likewise, the results reinforce the usefulness of the combined use of THC and CBD, which has important advantages in relation to the possibility of using lower doses, thus minimizing the psychoactive effects of THC.”

https://pubmed.ncbi.nlm.nih.gov/35743206/

https://www.mdpi.com/1422-0067/23/12/6766


Promoting Oligodendrocyte Differentiation from Human Induced Pluripotent Stem Cells by Activating Endocannabinoid Signaling for Treating Spinal Cord Injury

SpringerLink

“Transplantation of oligodendrocyte progenitor cell (OPC) at the injury site is being developed as a potential therapeutic strategy for promoting remyelination and locomotor function recovery after spinal cord injury (SCI). To this end, the development of expandable and functional human OPCs is crucial for testing their efficacy in SCI.

In mice and rats, the endocannabinoid signaling system is crucial for the survival, differentiation, and maturation of OPCs. Similar studies in humans are lacking currently. Endocannabinoids and exogenous cannabinoids exert their effects mainly via cannabinoid receptors (CB1R and CB2R). We demonstrated that these receptors were differentially expressed in iPSC-derived human NSCs and OPCs, and they could be activated by WIN55212-2 (WIN), a potent CB1R/CB2R agonist to upregulate the endocannabinoid signaling during glial induction.

WIN primed NSCs generated more OLIG2 + glial progenitors and migratory PDGFRα + OPC in a CB1/CB2 dependent manner compared to unprimed NSCs. Furthermore, WIN-induced OPCs (WIN-OPCs) robustly differentiated into functional oligodendrocytes and myelinate in vitro and in vivo in a mouse spinal cord injury model. RNA-Seq revealed that WIN upregulated the biological process of positive regulation of oligodendrocyte differentiation. Mechanistically, WIN could act as a partial smoothed (SMO) inhibitor or activate CB1/CB2 to form heteromeric complexes with SMO leading to the inhibition of GLI1 in the Sonic hedgehog pathway.

The partial and temporal inhibition of GLI1 during glial induction is shown to promote OPCs that differentiate faster than control’s. Thus, CB1R/CB2R activation results in more efficient generation of OPCs that can mature and efficiently myelinate.”

https://pubmed.ncbi.nlm.nih.gov/35725998/

https://link.springer.com/article/10.1007/s12015-022-10405-0


Evaluation of cannabinoid receptors type 1-2 in periodontitis patients

“Background: As effective immune modulators, Endocannabinoids may suppress the inflammatory responses in periodontitis. This study assessed the expression of cannabinoid receptors in gingiva and the impact on periodontitis.

Methods: A cross-sectional study on 20 patients with more than stage II and Grade A periodontitis and a control group consisting of 19 healthy individuals was performed. The gingival biopsies were assessed for the expression of CB1 and CB2 using the quantitative reverse transcription polymerase chain reaction, TaqMan method.

Results: The study sample consisted of 39 subjects, 31 females (79.5%) and 8 males (20.5%), including 20 periodontitis subjects (80% female and 20% male), and control groups (78.9% female and 21.1% male). The mean ages of cases and controls were 33.3 ± 4.7 and 35.7 ± 5.1 years, respectively. The gene expression of CB2 in periodontitis was 27.62 ± 7.96 and in healthy subjects was 78.15 ± 23.07. The CB2 was significantly lower than the control group (p = .008). In comparison, the gene expression index of CB1 in the periodontal group (9.42 ± 3.03) was higher than the control group (6.62 ± 1.13) but did not meet a significant value (p = .671).

Conclusion: The lower expression of CB2 receptors in the periodontitis group may be due to the reduced protective effect of anti-inflammatory agents. These elements include cannabinoids and the imbalance leading to the predominance of pro-inflammatory effects. Therefore, the local effects of cannabinoids as an immunomodulator could be useful for oral inflammatory diseases such as periodontitis.”

https://pubmed.ncbi.nlm.nih.gov/35719011/

“In conclusion, as CB2 receptors are expressed in gingival tissues, particularly immune cells and fibroblasts, they involve in tissue and wound repair. The lower expression of these receptors in periodontitis, could be related to the inflammatory reactions and interrupts wound repair. Therefore, it seems that the use of cannabinoid CB2 agonists in the form of mouth wash contributes to the healing of periodontitis.”

https://onlinelibrary.wiley.com/doi/10.1002/cre2.608

Inhibition of mitochondrial permeability transition pore and antioxidant effect of Delta-9-tetrahydrocannabinol reduces aluminium phosphide-induced cytotoxicity and dysfunction of cardiac mitochondria

Pesticide Biochemistry and Physiology

“Previous studies have demonstrated that phosphine gas (PH3) released from aluminium phosphide (AlP) can inhibit cytochrome oxidase in cardiac mitochondria and induce generation of free radicals, oxidative stress, alteration in antioxidant defense system and cardiotoxicity.

Available evidence suggests that cannabinoids have protective effects in the reduction of oxidative stress, mitochondrial and cardiovascular damages.

The objective of this study was to evaluate the effect of trans-Δ-9-tetrahydrocannabinol (THC) on AlP-induced toxicity in isolated cardiomyocytes and cardiac mitochondria.

Rat heart isolated cardiomyocytes and mitochondria were cotreated with different concentrations of THC (10, 50 and 100 μM) and IC50 of AlP, then cellular and mitochondrial toxicity parameters were assayed. Treatment with AlP alone increased the cytotoxicity, depletion of cellular glutathione (GSH), mitochondrial reactive oxygen species (ROS) generation, lipid oxidation, mitochondria membrane potential (ΔΨm) collapse and mitochondrial swelling, when compared to control group. However, incubation with THC (10, 50 and 100 μM) attenuated the AlP-induced changes in all these parameters in a THC concentration-dependent manner.

Interestingly, the obtained results showed remarkably significant protective effects of THC by attenuation the different parameters of cytotoxicity, mitochondrial toxicity and oxidative stress induced by ALP in isolated cardiomyocytes and cardiac mitochondria. It is the first report showing the protective effects of THC against AlP-induced toxicity, and these effects are related to antioxidant potential and inhibition of mitochondria permeability transition (MPT) pore.

Based on these results, it was hypothesized that THC may be used as a potential therapeutic agent for the treatment of AlP-induced mitochondrial dysfunction and cardiotoxicity.”

https://pubmed.ncbi.nlm.nih.gov/35715056/

“AIP-induced mitochondrial dysfunction and oxidative stress in mitochondria.•

THC inhibits AIP-induced mitochondrial dysfunction in isolated mitochondria.•

THC reverses AIP-induced mitochondrial swelling in isolated mitochondria.•

THC inhibits AIP-induced MMP (ΔΨm) collapse in isolated mitochondria.•

THC ameliorates AIP-induced cytotoxicity and oxidative stress in cardiomyocytes.”

https://www.sciencedirect.com/science/article/abs/pii/S0048357522000840?via%3Dihub

Unlabelled Image


Chronic Pain and the Endocannabinoid System: Smart Lipids – A Novel Therapeutic Option?

Karger Publishers Further Expands into Open Access and Open Science | STM  Publishing News

“The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).”

https://pubmed.ncbi.nlm.nih.gov/35702403/

“The evidence that full-spectrum cannabis preparations have medical benefits with less unwanted central effects stimulated the development of an oromucosal spray containing full-spectrum water-soluble cannabis. This remarkable innovation in galenic technology advocates clinical studies further and enables the realization of the very promising therapeutic potentials. Medicinal cannabis has a favorable safety and tolerability profile”

https://www.karger.com/Article/FullText/522432

Inhibitory Effects of Cannabinoids on Acetylcholinesterase and Butyrylcholinesterase Enzyme Activities

Karger Publishers Further Expands into Open Access and Open Science | STM  Publishing News

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are two cholinergic enzymes catalyzing the reaction of cleaving acetylcholine into acetate and choline at the neuromuscular junction. Abnormal hyperactivity of AChE and BChE can lead to cholinergic deficiency, which is associated with several neurological disorders including cognitive decline and memory impairments.

Preclinical studies support that some cannabinoids including cannabidiol (CBD) and tetrahydrocannabinol (THC) may exert pharmacological effects on the cholinergic system, but it remains unclear whether cannabinoids can inhibit AChE and BChE activities.

Herein, we aimed to evaluate the inhibitory effects of a panel of cannabinoids including CBD, Δ8-THC, cannabigerol (CBG), cannabigerolic acid (CBGA), cannabicitran (CBT), cannabidivarin (CBDV), cannabichromene (CBC), and cannabinol (CBN) on AChE and BChE activities.

Results: Cannabinoids including CBD, Δ8-THC, CBG, CBGA, CBT, CBDV, CBC, and CBN (at 200 µM) inhibited the activities of AChE and BChE by 70.8, 83.7, 92.9, 76.7, 66.0, 79.3, 13.7, and 30.5%, and by 86.8, 80.8, 93.2, 87.1, 77.0, 78.5, 27.9, and 22.0%, respectively. The inhibitory effects of these cannabinoids (with IC50 values ranging from 85.2 to >200 µM for AChE and 107.1 to >200 µM for BChE) were less potent as compared to the positive control galantamine (IC50 1.21 and 6.86 µM for AChE and BChE, respectively). In addition, CBD, as a representative cannabinoid, displayed a competitive type of inhibition on both AChE and BChE. Data from the molecular docking studies suggested that cannabinoids interacted with several amino acid residues on the enzyme proteins, which supported their overall inhibitory effects on AChE and BChE.

Conclusion: Cannabinoids showed moderate inhibitory effects on the activities of AChE and BChE enzymes, which may contribute to their modulatory effects on the cholinergic system. Further studies using cell-based and in vivo models are warranted to evaluate whether cannabinoids’ neuroprotective effects are associated with their anti-cholinesterase activities.”

https://pubmed.ncbi.nlm.nih.gov/35702400/

“Previously published work from our group has shown that medicinal plants and their derived natural products show neuroprotective and anti-inflammatory properties.

Notably, cannabinoids from Cannabis sativa (C. sativa) have been increasingly evaluated in studies to treat chronic pain, inflammation, multiple sclerosis, post-traumatic stress disorder, and neurological diseases, specifically AD.

Furthermore, a study implicated that phytochemicals of C. sativa, including several cannabinoids, are inhibitors of AChE,

In summary, several cannabinoids exhibited moderate inhibitory effects against the activities of cholinesterases including AChE and BChE.”

https://www.karger.com/Article/FullText/524086

“Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease Therapy”

https://www.frontiersin.org/articles/10.3389/fphar.2018.01192/full


Detection of Cannabinoid Receptor Expression by Endometriotic Lesions in Women with Endometriosis as an Alternative to Opioid-Based Pain Medication

The Journal of Immunology

“Emerging information suggests a potential role of medicinal cannabis in pain medication in addition to enhancing immune functions.

Endometriosis is a disease of women of reproductive age associated with infertility and reproductive failure as well as chronic pain of varying degrees depending on the stage of the disease. Currently, opioids are being preferred over nonsteroidal anti-inflammatory drugs (NSAID) due to the latter’s side effects. However, as the opioids are becoming a source of addiction, additional pain medication is urgently needed.

Cannabis offers an alternative therapy for treating the pain associated with endometriosis.

Information on the use and effectiveness of cannabis against endometriotic pain is lacking. Moreover, expression of receptors for endocannabinoids by the ovarian endometriotic lesions is not known. The goal of this study was to examine whether cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed by ovarian endometriotic lesions.

Archived normal ovarian tissues, ovaries with endometriotic lesions, and normal endometrial tissues were examined for the presence of endometrial stromal cells using CD10 (a marker of endometrial stromal cells). Expression of CB1 and CB2 were determined by immunohistochemistry, immunoblotting, and gene expression studies.

Intense expression for CB1 and CB2 was detected in the epithelial cells in ovarian endometriotic lesions. Compared with stroma in ovaries with endometriotic lesions, the expression of CB1 and CB2 was significantly higher in the epithelial cells in endometriotic lesions in the ovary (P < 0.0001 and P < 0.05, respectively). Immunoblotting and gene expression assays showed similar patterns for CB1 and CB2 protein and CNR1 (gene encoding CB1) and CNR2 (gene encoding CB2) gene expression.

These results suggest that ovarian endometriotic lesions express CB1 and CB2 receptors, and these lesions may respond to cannabinoids as pain medication. These results will form a foundation for a clinical study with larger cohorts.”

https://pubmed.ncbi.nlm.nih.gov/35692500/

“Cannabinoids are compounds found in cannabis.”

https://www.hindawi.com/journals/jir/2022/4323259/


Medical cannabis and automobile accidents: Evidence from auto insurance

“While many states have legalized medical cannabis, many unintended consequences remain under-studied. We focus on one potential detriment-the effect of cannabis legalization on automobile safety. We examine this relationship through auto insurance premiums.

Employing a modern difference-in-differences framework and zip code-level premium data from 2014 to 2019, we find that premiums declined, on average, by $22 per year following medical cannabis legalization. The effect is more substantial in areas near a dispensary and in areas with a higher prevalence of drunk driving before legalization.

We estimate that existing legalization has reduced health expenditures related to auto accidents by almost $820 million per year with the potential for a further $350 million reduction if legalized nationally.”

https://pubmed.ncbi.nlm.nih.gov/35691014/

https://onlinelibrary.wiley.com/doi/10.1002/hec.4553

Sex-Dependent Prescription Patterns and Clinical Outcomes Associated With the Use of Two Oral Cannabis Formulations in the Multimodal Management of Chronic Pain Patients in Colombia

Frontiers - Home | Facebook

“To date, the therapeutic use of cannabinoids in chronic pain management remains controversial owing to the limited clinical evidence found in randomized clinical trials (RCTs), the heterogeneous nature of the clinical indication, and the broad range of cannabis-based medicinal products (CBMPs) used in both experimental and observational clinical studies.

Here we evaluate patient-reported clinical outcomes (PROMS) in a cohort of adult patients, diagnosed with chronic pain of diverse etiology, who received adjuvant treatment with oral, cannabis-based, magistral formulations between May and September 2021 at the Latin American Institute of Neurology and Nervous System (ILANS-Zerenia) in Bogotá, Colombia.

During this period, 2,112 patients completed a PROMS questionnaire aimed at capturing the degree of clinical improvement of their primary symptom and any potential side effects. Most participants were female (76.1%) with an average age of 58.7 years old, and 92.5% (1,955 patients) reported some improvement in their primary symptom (p < 0.001). Two monovarietal, full-spectrum, cannabis formulations containing either cannabidiol (CBD 30 mg/mL; THC <2 mg/mL) or a balanced composition (THC 12 mg/mL; CBD 14 mg/mL) accounted for more than 99% of all prescriptions (59.5 and 39.8%, respectively).

The degree of improvement was similar between both formulations, although males reported less effectiveness in the first 4 weeks of treatment. Sex-specific differences were also found in prescription patterns, with male patients increasing the intake of the balanced chemotype overtime. For many patients (71.7%) there were no adverse side effects associated to the treatment and those most reported were mild, such as somnolence (13.0%), dizziness (8.1%) and dry mouth (4.2%), which also appeared to fade over time.

Our results constitute the first real-world evidence on the clinical use of medicinal cannabis in Colombia and suggest that cannabis-based oral magistral formulations represent a safe and efficacious adjuvant therapeutic option in the management of chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/35399153/

“Cannabis sativa L. is one of the oldest plants cultivated by humanity and its medicinal and ethnobotanical properties have been exploited for centuries by many different ancient cultures. Medicinal cannabis in the form of oral magistral formulations may represent a valuable option for physicians as an adjuvant therapeutic intervention in the management of chronic pain and associated comorbidities. “

https://www.frontiersin.org/articles/10.3389/fpain.2022.854795/full


Cannabis-Based Products for Chronic Pain : A Systematic Review

Annals of Internal Medicine

“Background: Contemporary data are needed about the utility of cannabinoids in chronic pain.

Purpose: To evaluate the benefits and harms of cannabinoids for chronic pain.

Data sources: Ovid MEDLINE, PsycINFO, EMBASE, the Cochrane Library, and Scopus to January 2022.

Study selection: English-language, randomized, placebo-controlled trials and cohort studies (≥1 month duration) of cannabinoids for chronic pain.

Data extraction: Data abstraction, risk of bias, and strength of evidence assessments were dually reviewed. Cannabinoids were categorized by THC-to-CBD ratio (high, comparable, or low) and source (synthetic, extract or purified, or whole plant).

Data synthesis: Eighteen randomized, placebo-controlled trials (n = 1740) and 7 cohort studies (n = 13 095) assessed cannabinoids. Studies were primarily short term (1 to 6 months); 56% enrolled patients with neuropathic pain, with 3% to 89% female patients. Synthetic products with high THC-to-CBD ratios (>98% THC) may be associated with moderate improvement in pain severity and response (≥30% improvement) and an increased risk for sedation and are probably associated with a large increased risk for dizziness. Extracted products with high THC-to-CBD ratios (range, 3:1 to 47:1) may be associated with large increased risk for study withdrawal due to adverse events and dizziness. Sublingual spray with comparable THC-to-CBD ratio (1.1:1) probably is associated with small improvement in pain severity and overall function and may be associated with large increased risk for dizziness and sedation and moderate increased risk for nausea. Evidence for other products and outcomes, including longer-term harms, were not reported or were insufficient.

Limitation: Variation in interventions; lack of study details, including unclear availability in the United States; and inadequate evidence for some products.

Conclusion: Oral, synthetic cannabis products with high THC-to-CBD ratios and sublingual, extracted cannabis products with comparable THC-to-CBD ratios may be associated with short-term improvements in chronic pain and increased risk for dizziness and sedation. Studies are needed on long-term outcomes and further evaluation of product formulation effects.”

https://pubmed.ncbi.nlm.nih.gov/35667066/

https://www.acpjournals.org/doi/10.7326/M21-4520