Evaluation of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents

Frontiers announces first journal acquisition: Oncology Reviews – STM  Publishing News

“Cannabis sativa L. is a plant that contains numerous chemically active compounds including cannabinoids such as trans-Δ-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), and flavone derivatives, such as luteolin-7-O-glucuronide and apigenin glucuronide. In particular, the polar fraction of hemp including many phenolic compounds has been overlooked when compared with the more lipophilic fraction containing cannabinoids. Therefore, the aim of this study was to assess two extracts of industrial hemp (C. sativa) of different polarity (aqueous and hexane) by evaluating their antioxidant profile and their neuroprotective potential on pharmacological targets in the central nervous system (CNS). Several assays on in vitro antioxidant capacity (DPPH, superoxide radical, FRAP, ORAC), as well as inhibition of physiological enzymes such as acetylcholinesterase (AChE) and monoaminooxidase A (MAO-A) were carried out in order to find out how these extracts may be helpful to prevent neurodegenerative disorders. Neuro-2a cell line was selected to test the cytotoxic and neuroprotective potential of these extracts. Both extracts showed striking antioxidant capacity in the FRAP and ORAC assays, particularly the hexane extract, and interesting results for the DPPH and superoxide radical uptake assays, with the aqueous extract standing out especially in the latter. In enzyme inhibition assays, the aqueous extract showed AChE and MAO-A inhibitory activity, while the hexane extract only reached IC50 value for AChE inhibitory bioassay. Neuro-2a assays demonstrated that polyphenolic extract was not cytotoxic and exhibited cytoprotective properties against hydrogen peroxide and antioxidant response decreasing reactive oxygen species (ROS) production. These extracts could be a source of compounds with potential benefit on human health, especially related to neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/36176449/

“In conclusion, this study provided new insights into the biological activities of two different extracts of C. sativa. It was revealed that these extracts constitute a valuable and interesting natural source of bioactive molecules with great antioxidant properties, potentially capable of preventing neurodegenerative diseases.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.1009868/full

Cannabidiol in Treatment of Autism Spectrum Disorder: A Case Study

Archive of "Cureus". - PMC

“This case study aims to demonstrate the use of cannabidiol (CBD) with low-dose tetrahydrocannabinol (THC) in managing symptoms associated with autism spectrum disorder (ASD) to increase the overall quality of life for these individuals and their families.

ASD is a neurodevelopmental disorder affecting cognitive development, behavior, social communication, and motor skills. Despite the increasing awareness of ASD, there is still a lack of safe and effective treatment options.

The study includes a nine-year-old male patient who was diagnosed with nonverbal ASD. He exhibited emotional outbursts, inappropriate behaviors, and social deficits including challenges in communicating his needs with others. Since the patient was unable to attain independence at school and at home, his condition was a significant burden to his caregivers.

The patient was treated with full-spectrum high CBD and low THC oil formulation, with each milliliter containing 20 mg of CBD and <1 mg of THC. CBD oil starting dose was 0.1ml twice daily, increased every three to four days to 0.5ml twice daily.

Overall, the patient experienced a reduction in negative behaviors, including violent outbursts, self-injurious behaviors, and sleep disruptions. There was an improvement in social interactions, concentration, and emotional stability.

A combination of high CBD and low-dose THC oil was demonstrated to be an effective treatment option for managing symptoms associated with autism, leading to a better quality of life for both the patient and the caregivers.”

https://pubmed.ncbi.nlm.nih.gov/36176817/

“In this case, the child patient responded positively to the introduction of CBD oil treatment with reduced negative behaviors, better sleep, and improved communication. With the increasing clinical studies on the use of cannabidiol in treating patients with mood disorders, anxiety, chronic pain conditions, and other behavioral problems, it should be considered as a treatment option in managing symptoms related to autism. In the case study presented, the child patient has shown behavioral and cognitive improvements with no side effects reported. Altogether, this study presents a case that motivates further research and clinical studies to understand the molecular mechanism of CBD as well as the dosing regimes for pediatric populations, the etiology of ASD, and how various dosing affect different demographics.”

https://www.cureus.com/articles/109585-cannabidiol-in-treatment-of-autism-spectrum-disorder-a-case-study


Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome

Nature Reviews Gastroenterology & Hepatology

“The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options.

Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease.

The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome.

Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.”

https://pubmed.ncbi.nlm.nih.gov/36168049/

https://www.nature.com/articles/s41575-022-00682-y

Dynamic Changes in the Endocannabinoid System during the Aging Process: Focus on the Middle-Age Crisis

ijms-logo

“Endocannabinoid (eCB) signaling is markedly decreased in the hippocampus (Hip) of aged mice, and the genetic deletion of the cannabinoid receptor type 1 (CB1) leads to an early onset of cognitive decline and age-related histological changes in the brain. Thus, it is hypothesized that cognitive aging is modulated by eCB signaling through CB1.

In the present study, we detailed the changes in the eCB system during the aging process using different complementary techniques in mouse brains of five different age groups, ranging from adolescence to old age.

Our findings indicate that the eCB system is most strongly affected in middle-aged mice (between 9 and 12 months of age) in a brain region-specific manner. We show that 2-arachidonoylglycerol (2-AG) was prominently decreased in the Hip and moderately in caudate putamen (CPu), whereas anandamide (AEA) was decreased in both CPu and medial prefrontal cortex along with cingulate cortex (mPFC+Cg), starting from 6 months until 12 months. Consistent with the changes in 2-AG, the 2-AG synthesizing enzyme diacylglycerol lipase α (DAGLα) was also prominently decreased across the sub-regions of the Hip.

Interestingly, we found a transient increase in CB1 immunoreactivity across the sub-regions of the Hip at 9 months, a plausible compensation for reduced 2-AG, which ultimately decreased strongly at 12 months. Furthermore, quantitative autoradiography of CB1 revealed that [3H]CP55940 binding markedly increased in the Hip at 9 months. However, unlike the protein levels, CB1 binding density did not drop strongly at 12 months and at old age. Furthermore, [3H]CP55940 binding was significantly increased in the lateral entorhinal cortex (LEnt), starting from the middle age until the old age.

Altogether, our findings clearly indicate a middle-age crisis in the eCB system, which could be a potential time window for therapeutic interventions to abrogate the course of cognitive aging.”

https://pubmed.ncbi.nlm.nih.gov/36142165/

“In conclusion, our observations indicate that the eCB system is most affected during the middle age in a brain region-specific manner. Taken together, the middle-age crisis in the eCB signaling corresponds well with the onset of neuroinflammatory glial activity and cognitive deficits in mice. We now hypothesize that late middle-age is the time period when a therapy based on the activation of the cannabinoid system has the highest efficacy to prevent cognitive aging and pathologies related to brain aging.”

https://www.mdpi.com/1422-0067/23/18/10254/htm

Antibacterial Effects of Phytocannabinoids

life-logo

“Antibiotics are used as the first line of treatment for bacterial infections. However, antibiotic resistance poses a significant threat to the future of antibiotics, resulting in increased medical costs, hospital stays, and mortality. New resistance mechanisms are emerging and spreading globally, impeding the success of antibiotics in treating common infectious diseases.

Recently, phytocannabinoids have been shown to possess antimicrobial activity on both Gram-negative and Gram-positive bacteria. The therapeutic use of phytocannabinoids presents a unique mechanism of action to overcome existing antibiotic resistance.

Future research must be carried out on phytocannabinoids as potential therapeutic agents used as novel treatments against resistant strains of microbes.”

https://pubmed.ncbi.nlm.nih.gov/36143430/

“Current antibiotic treatments have limited efficacy against multidrug-resistant bacteria, causing a significant challenge for prescribing physicians. A lack of effective therapies or new antibiotics requires the development of alternative antimicrobial therapies. Research has shown phytocannabinoids and CB2 agonists to exhibit antibiotic activity against a variety of Gram-positive and Gram-negative bacteria. Although their antimicrobial activity is limited in terms of Gram-negative bacteria, they offer therapeutic potential when administered as an adjunct treatment with an outer membrane perturbing molecule to facilitate the permeation of compounds that are effective on Gram-positive bacteria. Research has also shown synergy supporting the potential for combination therapy both in vivo and in vitro. Furthermore, CB2 agonists, such as β-caryophyllene, are widely used in industry as food additives and traditional medicine, and many are FDA approved and generally recognised as safe (GRAS), making them a good option for a novel therapeutic. The studies presented in this review suggest an attractive potential for cannabinoid-based antibacterial treatments.”

https://www.mdpi.com/2075-1729/12/9/1394/htm

Identification of SARS-CoV-2 Main Protease Inhibitors from a Library of Minor Cannabinoids by Biochemical Inhibition Assay and Surface Plasmon Resonance Characterized Binding Affinity

molecules-logo

“The replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its main protease (Mpro), which is a plausible therapeutic target for coronavirus disease 2019 (COVID-19). Although numerous in silico studies reported the potential inhibitory effects of natural products including cannabis and cannabinoids on SARS-CoV-2 Mpro, their anti-Mpro activities are not well validated by biological experimental data. Herein, a library of minor cannabinoids belonging to several chemotypes including tetrahydrocannabinols, cannabidiols, cannabigerols, cannabichromenes, cannabinodiols, cannabicyclols, cannabinols, and cannabitriols was evaluated for their anti-Mpro activity using a biochemical assay. Additionally, the binding affinities and molecular interactions between the active cannabinoids and the Mpro protein were studied by a biophysical technique (surface plasmon resonance; SPR) and molecular docking, respectively. Cannabinoids tetrahydrocannabutol and cannabigerolic acid were the most active Mpro inhibitors (IC50 = 3.62 and 14.40 μM, respectively) and cannabigerolic acid had a binding affinity KD=2.16×10-4 M). A preliminary structure and activity relationship study revealed that the anti-Mpro effects of cannabinoids were influenced by the decarboxylation of cannabinoids and the length of cannabinoids’ alkyl side chain. Findings from the biochemical, biophysical, and computational assays support the growing evidence of cannabinoids’ inhibitory effects on SARS-CoV-2 Mpro.”

https://pubmed.ncbi.nlm.nih.gov/36144858/

“In summary, the inhibitory effects of a collection of cannabinoids on SARS-CoV-2 3CL Mpro were screened by a biochemical assay. Several minor cannabinoids (e.g., THCB and CBGA) showed promising anti-Mpro activity. In addition, we observed that decarboxylated cannabinoids, such as CBG and CBD, showed undermined inhibition capacity, as compared to the precursing cannabinoid acids (i.e., CBGA and CBDA, respectively). This SAR was supported by the binding affinities between these cannabinoids and the Mpro protein obtained from the SPR assays. Furthermore, the impact of the length of the alkyl side chain of cannabinoids on their anti-Mpro activity was explored. Our study is the first to evaluate the anti-Mpro activity of minor cannabinoids and their mechanisms of action, which contribute to a better understanding of cannabinoids’ potential roles in the management of COVID-19.”

https://www.mdpi.com/1420-3049/27/18/6127

Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts

molecules-logo

“Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes.

In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells.

Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold.

We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation.

A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and β-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA.

Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36144796/

“Cannabis sativa is a plant with a long history of consumption as food and medicine. Delta-9-tetrahydrocannabinol (THC) is one of the main cannabinoids in cannabis; it has many properties, including anti-cancer, anti-inflammatory, analgetic and others.”

https://www.mdpi.com/1420-3049/27/18/6057/htm

Preoperative cannabis use does not increase opioid utilization following primary total hip arthroplasty in a propensity matched analysis

SpringerLink

“Purpose: The recreational and medical use of cannabis is being legalized worldwide. Its use has been linked to an increased risk of developing opioid use disorders. As opioids continue to be prescribed after total hip arthroplasty (THA), the influence that preoperative cannabis use may have on postoperative opioid consumption remains unknown. The purpose of this study was to assess the relationship between preoperative cannabis use and opioid utilization following primary THA.

Methods: We identified all patients over the age of 18 who underwent unilateral, primary THA for a diagnosis of osteoarthritis at a single institution from February 2019 to April 2021. Our cohort was grouped into current cannabis users (within 6 months of surgery) and those who reported never using cannabis. One hundred and fifty-six current users were propensity score matched 1:6 with 936 never users based on age, sex, BMI, history of chronic pain, smoking status, history of anxiety/depression, ASA classification and type of anesthesia. Outcomes included inpatient and postdischarge opioid use in morphine milligram equivalents.

Results: Total inpatient opioid utilization, opioids refilled, and total opioids used within 90 postoperative days were similar between the groups.

Conclusion: In propensity score matched analyses, preoperative cannabis use was not independently associated with an increase in inpatient or outpatient, 90-days opioid consumption following elective THA.”

https://pubmed.ncbi.nlm.nih.gov/36129515/

https://link.springer.com/article/10.1007/s00402-022-04619-7

Does cannabis use predict aggressive or violent behavior in psychiatric populations? A systematic review

Publication Cover

“Background: Despite an increase in information evaluating the therapeutic and adverse effects of cannabinoids, many potentially important clinical correlates, including violence or aggression, have not been adequately investigated.Objectives: In this systematic review, we examine the published evidence for the relationship between cannabis and aggression or violence in individuals with psychiatric disorders.Methods: Following PRISMA guidelines, articles in English were searched on PubMed, Google Scholar, MEDLINE, and PsycINFO from database inception to January 2022. Data for aggression and violence in people with psychiatric diagnoses were identified during the searches.Results: Of 391 papers identified within the initial search, 15 studies met inclusion criteria. Cross-sectional associations between cannabis use and aggression or violence in samples with post-traumatic stress disorder (PTSD) were found. Moreover, a longitudinal association between cannabis use and violence and aggression was observed in psychotic-spectrum disorders. However, the presence of uncontrolled confounding factors in the majority of included studies precludes any causal conclusions.Conclusion: Although cannabis use is associated with aggression or violence in individuals with PTSD or psychotic-spectrum disorders, causal conclusions cannot be drawn due to methodological limitations observed in the current literature. Well-controlled, longitudinal studies are needed to ascertain whether cannabis plays a causal role on subsequent violence or aggression in mental health disorders.”

https://pubmed.ncbi.nlm.nih.gov/36137273/

https://www.tandfonline.com/doi/abs/10.1080/00952990.2022.2118060?journalCode=iada20

Cannabidiol and Delta-9-Tetrahydrocannabinol Interactions in Male and Female Rats with Persistent Inflammatory Pain

The Journal of Pain

“Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), two of the primary constituents of cannabis, are used by some individuals to self-treat chronic pain. It is unclear whether the pain-relieving effects of CBD alone and in combination with THC are consistent across genders and among types of pain.

The present study compared the effects of CBD and THC given alone and in combination in male and female rats with Complete Freund’s adjuvant-induced inflammatory pain.

After induction of hindpaw inflammation, vehicle, CBD (0.05-2.5 mg/kg), THC (0.05-2.0 mg/kg), or a CBD:THC combination (3:1, 1:1, or 1:3 dose ratio) was administered i.p. twice daily for three days. Then on day four, mechanical allodynia, thermal hyperalgesia, weight-bearing, and locomotor activity were assessed 0.5-4 h after administration of the same dose combination. Hindpaw edema and open field (anxiety-like) behaviors were measured thereafter.

THC alone was anti-allodynic and anti-hyperalgesic, and decreased paw thickness, locomotion, and open field behaviors. CBD alone was anti-allodynic and anti-hyperalgesic. When combined with THC, CBD tended to decrease THC effects on pain-related behaviors and exacerbate THC-induced anxiety-like behaviors, particularly in females.

These results suggest that at the doses tested, CBD-THC combinations may be less beneficial than THC alone for the treatment of chronic inflammatory pain.

PERSPECTIVE: The present study compared CBD and THC effects alone and in combination in male and female rats with persistent inflammatory pain. This study could help clinicians who prescribe cannabis-based medicines for inflammatory pain conditions determine which cannabis constituents may be most beneficial.”

https://pubmed.ncbi.nlm.nih.gov/36122809/

“THC and CBD each reduced chronic inflammatory pain (allodynia and hyperalgesia) in rats.”

https://www.jpain.org/article/S1526-5900(22)00392-3/fulltext