Medical Cannabis Used as an Alternative Treatment for Chronic Pain Demonstrates Reduction in Chronic Opioid Use – A Prospective Study

Pain Physician:::::

“Background: Chronic opioid therapy (COT) has been used to treat many chronic pain conditions even with poor evidence for its long-term effectiveness. Medical cannabis has emerged with certain pain-relieving properties, which has led to questions as to its’ potential application, especially in relation to its effect on opioid use.

Objectives: This study investigates a proposed clinical context in offering medical cannabis as a treatment for chronic pain for those already using chronic opioid therapy. It then details patients’ daily morphine milligram equivalent (MME) usage.

Study design: This single-center prospective study follows a group of patients trialing medical cannabis treatment for chronic pain that is already using COT in order to determine individual efficacy. Continued medical cannabis treatment was a decision made by the patient, after trialing medical cannabis, to either continue medical cannabis along with COT at a reduced daily MME, or to revert back to their previous COT regimen.

Setting: This study was performed at the Allegheny Health Network Institute for Pain Medicine in Pittsburgh, Pennsylvania. The state of Pennsylvania legalized medical cannabis in April of 2016, and it became available to patients in February of 2018 through medical dispensaries.

Methods: One hundred and fifteen patients met the inclusion criteria, with the majority of those excluded due to not being treated with COT. Of the 115 who chose to undergo a medical cannabis trial in addition to their COT, 75 chose to remain certified for medical cannabis as they had significant pain relief and subsequently weaned down on opioids. Additionally, of the 115 choosing to undergo a medical cannabis trial, 30 chose to be decertified due to ineffectiveness or side effects, and those were placed back on their COT regimen. The other 10 were not included for other denoted reasons. Compliance was monitored through urine drug screens (UDS).

Results: There was a 67.1% average decrease in daily MME/patient from 49.9 to 16.4 MME at the first follow-up. There was a 73.3% decrease in MME at second follow-up from 49.9 to 13.3 MME with an ANOVA analysis denoting a significant difference of P < 0.0001.

Limitations: The period of follow-up presented at this point includes their first 6 months of treatment with medical cannabis and COT concomitantly.

Conclusions: Presenting medical cannabis to chronic pain patients on COT should be done in the context of a patient choice between medical cannabis WITH decrement of COT or continued current dose of COT in order to maximize effectiveness in opioid reduction as well as to limit polypharmacy concerns regarding medical cannabis. Allowing for a temporary short-term period where patients may trial medical cannabis, while concomitantly gradually weaning their COT, is also essential in determining medical cannabis’ individual effectiveness for that patient’s specific type of chronic pain, which should serve to maximize long-term opioid reduction results and hence decrease opioid-related overdose deaths.”

https://pubmed.ncbi.nlm.nih.gov/35051158/

https://www.painphysicianjournal.com/linkout?issn=&vol=25&page=E113

A polarized supercell produces specialized metabolites in cannabis trichomes

Press – The Jensen Laboratory

“For centuries, humans have cultivated cannabis for the pharmacological properties that result from consuming its specialized metabolites, primarily cannabinoids and terpenoids. Today, cannabis is a multi-billion-dollar industry whose existence rests on the biological activity of tiny cell clusters, called glandular trichomes, found mainly on flowers. Cannabinoids are toxic to cannabis cells,1 and how the trichome cells can produce and secrete massive quantities of lipophilic metabolites is not known.1 To address this gap in knowledge, we investigated cannabis glandular trichomes using ultra-rapid cryofixation, quantitative electron microscopy, and immuno-gold labeling of cannabinoid pathway enzymes. We demonstrate that the metabolically active cells in cannabis form a “supercell,” with extensive cytoplasmic bridges across the cell walls and a polar distribution of organelles adjacent to the apical surface where metabolites are secreted. The predicted metabolic role of the non-photosynthetic plastids is supported by unusual membrane arrays in the plastids and the localization of the start of the cannabinoid/terpene pathway in the stroma of the plastids. Abundant membrane contact sites connected plastid paracrystalline cores with the plastid envelope, plastid with endoplasmic reticulum (ER), and ER with plasma membrane. The final step of cannabinoid biosynthesis, catalyzed by tetrahydrocannabinolic acid synthase (THCAS), was localized in the cell-surface wall facing the extracellular storage cavity. We propose a new model of how the cannabis cells can support abundant metabolite production, with emphasis on the key role of membrane contact sites and extracellular THCA biosynthesis. This new model can inform synthetic biology approaches for cannabinoid production in yeast or cell cultures.”

https://pubmed.ncbi.nlm.nih.gov/35917819/

https://www.cell.com/current-biology/fulltext/S0960-9822(22)01115-0?

“Study defines how cannabis cells make cannabinoids”

https://www.news-medical.net/news/20220803/Study-defines-how-cannabis-cells-make-cannabinoids.aspx

Mortality risk for individuals with cannabis use disorders in relation to alcohol use disorders: Results of a follow-up study

Psychiatry Research

“Background: There are few studies on mortality on individuals entering treatment for cannabis use disorders.

Objectives: To estimate mortality risk for individuals treated for cannabis use disorders comparing patients with concomitant alcohol use disorders to those with only cannabis use disorders.

Methods: Follow-up study on 1136 residents in Northern Italy who turned to health services following problems caused by cannabis use disorders between 2009 and 2019. Individuals with concomitant use of opioids, amphetamines, cocaine, or injecting drugs were excluded. Crude mortality rates per 1000 Person Years (CMR), and standardized mortality ratios adjusted for age, sex and calendar year (SMR) were calculated.

Results: Elevated CMRs (CMR 4.4, 3-6.4), higher among patients with concomitant alcohol use disorders (CMR 10.2, 6.6-15.6) compared to those with only cannabis use disorders (CMR 1.8, 0.9-3.6) were found. Regarding excess mortality with respect to the general population, SMRs were higher and statistically significant (SMR 5.4, 3.7-7.8), both among patients with concomitant alcohol use disorders (SMR 10.2, 6.6-15.6) and among those with only cannabis use disorders (SMR 2.3, 1.1-4.5).

Conclusions: The results of this study show that individuals with only cannabis use disorders have a lower mortality risk compared to those with both cannabis and alcohol use disorders.”

https://pubmed.ncbi.nlm.nih.gov/35908347/

“The results of our study show that individuals with only cannabis use disorders have a lower mortality risk compared to those with cannabis and alcohol use disorders.”

https://www.sciencedirect.com/science/article/abs/pii/S0165178122003365?via%3Dihub

“Daily drinking is associated with increased mortality”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6214719/

[Medical cannabis]

“Health is a human right. In order to guarantee that right, it is fundamental that all activities concerning health in different contexts (clinical, research, teaching) contribute to the construction of an efficient system that promotes excellence, equity, justice, and solidarity. In this issue, we take on alternatives regarding the use of medical cannabis from this perspective. Health research and its contribution to knowledge – in particular with respect to the development of new pharmaceuticals – represents not only a challenge related to technology and production, but also an opportunity for ensuring the autonomy of the health system.”

https://pubmed.ncbi.nlm.nih.gov/35900986/

http://revistas.unla.edu.ar/saludcolectiva/article/view/3991

Cannabis use does not increase actual creativity but biases evaluations of creativity

Cover image for Journal of Applied Psychology

“In this research, we examine the effects of cannabis use on creativity and evaluations of creativity. Drawing on both the broaden-and-build theory and the affect-as-information model, we propose that cannabis use would facilitate more creativity as well as more favorable evaluations of creativity via cannabis-induced joviality. We tested this prediction in two experiments, wherein participants were randomly assigned to either a cannabis use or cannabis abstinence condition.

We find support for our prediction that cannabis use facilitates joviality, which translates to more favorable evaluations of creativity of one’s own ideas and others’ ideas. However, our prediction that cannabis use facilitates creativity via joviality was not supported. Our findings suggest that cannabis use may positively bias evaluations of creativity but have no impact on creativity. Implications for theory and practice are discussed.”

https://pubmed.ncbi.nlm.nih.gov/35901408/

https://psycnet.apa.org/doiLanding?doi=10.1037%2Fapl0000599

Estimating the effects of legalizing recreational cannabis on newly incident cannabis use

Plos One | Publons

“Liberalized state-level recreational cannabis policies in the United States (US) fostered important policy evaluations with a focus on epidemiological parameters such as proportions [e.g., active cannabis use prevalence; cannabis use disorder (CUD) prevalence].

This cannabis policy evaluation project adds novel evidence on a neglected parameter-namely, estimated occurrence of newly incident cannabis use for underage (<21 years) versus older adults. The project’s study populations were specified to yield nationally representative estimates for all 51 major US jurisdictions, with probability sample totals of 819,543 non-institutionalized US civilian residents between 2008 and 2019. Standardized items to measure cannabis onsets are from audio computer-assisted self-interviews. Policy effect estimates are from event study difference-in-difference (DiD) models that allow for causal inference when policy implementation is staggered.

The evidence indicates no policy-associated changes in the occurrence of newly incident cannabis onsets for underage persons, but an increased occurrence of newly onset cannabis use among older adults (i.e., >21 years). We offer a tentative conclusion of public health importance: Legalized cannabis retail sales might be followed by the increased occurrence of cannabis onsets for older adults, but not for underage persons who cannot buy cannabis products in a retail outlet.

Cannabis policy research does not yet qualify as a mature science. We argue that modeling newly incident cannabis use might be more informative than the modeling of prevalences when evaluating policy effects and provide evidence of the advantages of the event study model over regression methods that seek to adjust for confounding factors.”

https://pubmed.ncbi.nlm.nih.gov/35862417/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271720


Anti-Tumorigenic Effect of a Novel Derivative of 2-Hydroxyoleic Acid and the Endocannabinoid Anandamide on Neuroblastoma Cells

biomedicines-logo

“Modulation of the endogenous cannabinoid system has been suggested as a potential anticancer strategy.

In the search for novel and less toxic therapeutic options, structural modifications of the endocannabinoid anandamide and the synthetic derivative of oleic acid, Minerval (HU-600), were done to obtain 2-hydroxy oleic acid ethanolamide (HU-585), which is an HU-600 derivative with the anandamide side chain.

We showed that treatment of SK-N-SH neuroblastoma cells with HU-585 induced a better anti-tumorigenic effect in comparison to HU-600 as evidenced by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide assay, colony-forming assay, and migration assay. Moreover, HU-585 demonstrated pro-apoptotic properties shown by increased levels of activated caspase-3 following treatment and a better senescence induction effect in comparison to HU-600, as demonstrated by increased activity of lysosomal β-galactosidase. Finally, we observed that combined treatment of HU-585 with the senolytic drugs ABT-263 in vitro, and ABT-737 in vivo resulted in enhanced anti-proliferative effects and reduced neuroblastoma xenograft growth in comparison to treatment with HU-585 alone.

Based on these results, we suggest that HU-585 is a pro-apoptotic and senescence-inducing compound, better than HU-600. Hence, it may be a beneficial option for the treatment of resistant neuroblastoma especially when combined with senolytic drugs that enhance its anti-tumorigenic effects.”

https://pubmed.ncbi.nlm.nih.gov/35884854/

“The cannabinoids are a group of more than 100 chemically related compounds found in the marijuana plant Cannabis sativa, that have been found to possess diverse pharmacological activities in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Tetrahydrocannabinol (THC), the main psychoactive constituent in Cannabis sativa, acts mainly through the activation of specific cannabinoid receptors CB1 and CB2 and thus mimics the binding of the animal endogenous cannabinoids (named endocannabinoids).”

https://www.mdpi.com/2227-9059/10/7/1552/htm

Activation of Peripheral Cannabinoid Receptors Synergizes the Effect of Systemic Ibuprofen in a Pain Model in Rat

pharmaceuticals-logo

“Pharmacological synergism is a current strategy for the treatment of pain. However, few studies have been explored to provide evidence of the possible synergism between a non-steroidal anti-inflammatory drug (NSAID) and a cannabinoid agonist, in order to establish which combinations might be effective to manage pain.

The aim of this study was to explore the synergism between ibuprofen (IBU) and the synthetic cannabinoid WIN 55,212-2 (WIN) to improve pain relief by analyzing the degree of participation of the CB1 and CB2 cannabinoid receptors in the possible antinociceptive synergism using an experimental model of pain in Wistar rats.

First, the effective dose thirty (ED30) of IBU (10, 40, 80, and 160 mg/kg, subcutaneous) and WIN (3, 10, and 30 µg/p, intraplantar) were evaluated in the formalin test. Then, the constant ratio method was used to calculate the doses of IBU and WIN to be administered in combination (COMB) to determine the possible synergism using the isobolographic method. The participation of the CB1 and CB2 receptors was explored in the presence of the antagonists AM281 and AM630, respectively.

The combination of these drugs produced a supra-additive response with an interaction index of 0.13. In addition, AM281 and AM630 antagonists reversed the synergistic effect in 45% and 76%, respectively, suggesting that both cannabinoid receptors are involved in this synergism, with peripheral receptors playing a relevant role.

In conclusion, the combination of IBU + WIN synergism is mainly mediated by the participation of the CB2 receptor, which can be a good option for the better management of pain relief.”

https://pubmed.ncbi.nlm.nih.gov/35893735/

https://www.mdpi.com/1424-8247/15/8/910

Differential Effects of D9 Tetrahydrocannabinol (THC)- and Cannabidiol (CBD)-Based Cannabinoid Treatments on Macrophage Immune Function In Vitro and on Gastrointestinal Inflammation in a Murine Model

biomedicines-logo

“Phytocannabinoids possess a wide range of immune regulatory properties, mediated by the endocannabinoid system.

Monocyte/macrophage innate immune cells express endocannabinoid receptors. Dysregulation of macrophage function is involved in the pathogenesis of different inflammatory diseases, including inflammatory bowel disease.

In our research, we aimed to evaluate the effects of the phytocannabinoids D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on macrophage activation.

Macrophages from young and aged C57BL/6 mice were activated in vitro in the presence of pure cannabinoids or cannabis extracts. The phenotype of the cells, nitric oxide (NO•) secretion, and cytokine secretion were examined. In addition, these treatments were administered to murine colitis model. The clinical statuses of mice, levels of colon infiltrating macrophages, and inflammatory cytokines in the blood, were evaluated.

We demonstrated inhibition of macrophage NO• and cytokine secretion and significant effects on expression of cell surface molecules. In the murine model, clinical scores were improved and macrophage colon infiltration reduced following treatment. We identified higher activity of cannabis extracts as compared with pure cannabinoids. Each treatment had a unique effect on cytokine composition.

Overall, our results establish that the effects of cannabinoid treatments differ. A better understanding of the reciprocal relationship between cannabinoids and immunity is essential to design targeted treatment strategies.”

https://pubmed.ncbi.nlm.nih.gov/35892693/

“Overall, our results indicate both similarities and differences between the impact of CBD- and THC-based drugs. Although all the tested treatments had an anti-inflammatory effect, their specific effects (for example, on phenotype of the cells and on cytokine production) differed. These differences may influence the clinical outcome of the treatment. We were surprised to find very similar anti-inflammatory results for the two cannabis extracts, which had diverse content of THC and CBD. This could suggest that THC/CBD content may not be the best indicator for anti-inflammatory properties of a cannabis-based drug. These results highlight the need to expand the research on the interplay between cannabinoids and other phytochemicals in the cannabis extracts. A better understanding of the effects of each molecule and the synergism between these molecules on the immune response will assist physicians to provide the best possible individually targeted treatment for their patients and will allow the design of new treatments.”

https://www.mdpi.com/2227-9059/10/8/1793/htm

Anti-cancer properties of cannflavin A and potential synergistic effects with gemcitabine, cisplatin, and cannabinoids in bladder cancer

“Introduction: Several studies have shown anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of most compounds present in cannabis in bladder cancer and how these compounds could potentially positively or negatively impact the actions of chemotherapeutic agents. Our study aims to evaluate the effects of a compound found in Cannabis sativa that has not been extensively studied to date, cannflavin A, in bladder cancer cell lines. We aimed to identify whether cannflavin A co-treatment with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, is able to produce synergistic effects. We also evaluated whether co-treatment of cannflavin A with various cannabinoids could produce synergistic effects.

Results: Cell viability of bladder cancer cell lines was affected in a concentration-dependent fashion in response to cannflavin A, and its combination with gemcitabine or cisplatin induced differential responses-from antagonistic to additive-and synergism was also observed in some instances, depending on the concentrations and drugs used. Cannflavin A also activated apoptosis via caspase 3 cleavage and was able to reduce invasion by 50%. Interestingly, cannflavin A displayed synergistic properties with other cannabinoids like Δ9-tetrahydrocannabinol, cannabidiol, cannabichromene, and cannabivarin in the bladder cancer cell lines.

Discussion: Our results indicate that compounds from Cannabis sativa other than cannabinoids, like the flavonoid cannflavin A, can be cytotoxic to human bladder transitional carcinoma cells and that this compound can exert synergistic effects when combined with other agents. In vivo studies will be needed to confirm the activity of cannflavin A as a potential agent for bladder cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/35869542/

“A study recently demonstrated that the combination of Δ9-tetrahydrocannabinol and cannabichromene produced synergistic effects in a bladder cancer model, while another focused on the effects of cannabidiol and their potential formulation within nanoparticles to treat bladder cancer. Here, we show that other compounds from cannabis, like cannflavin A, may also induce beneficial cytotoxic and synergistic effects on bladder cancer cells. Our results also showed the ability of cannabinoids, other than Δ9-tetrahydrocannabinol, to produce synergistic effects when combined with the flavonoid cannflavin A.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-022-00151-y