Medicinal Applications of Cannabinoids Extracted from Cannabis sativa (L.): A new Route to Fight against COVID-19?

 “Cannabis sativa is a well-known plant which has been of benefit since ancient times in several medicinal systems, including Chinese, Indian, Greek and Egyptian ones.

Although C. sativa is one of the most investigated medicinal plants in the world, it faces the most controversial of issues for its legalization as a medication. C. sativa contains several hundreds of phytoconstituents including the infamous «cannabinoid.” It is necessary to properly understand the medicinal importance of these phytochemicals and spread awareness among the countries where it’s still facing legal complexities.

The current review is focusing on most recent literature pertaining to the various applications of cannabinoids with a special focus on medicinal aspect of the phytochemicals. Peer reviewed articles focusing on the importance of cannabis and cannabinoids were the target of this review. Articles were selected based on the relevance to the general scope of the work i.e. application of cannabinoids.

Cannabinoids can truly be regarded as wonder drug keeping their immense diversity of usage but unfortunately, many of the mares never researched biologically or pharmacologically due to their low yield in the plant. However, the approval of some cannabinoids by the FDA (along with other recognized national medical health systems) has opened the horizons for the explicit use of these natural drugs in medicines such as Epidiolex® (cannabidiol used for the treatment of severe forms of epilepsy) and Sativex®(‘Δ9 -tetrahydrocannabinol and cannabidiol’ used for the treatment of spasticity caused by multiple sclerosis, aka: MS.)

Many pharmacological properties of C. sativa are attributed to cannabidiol (CBD), a non-psychoactive component, along with Δ9 -tetrahydrocannabinol (Δ9 -THC), a psychoactive component. This review addresses the most important application or current utilization of cannabinoids in a variety of treatments such as: chronic pain, cancer, emesis, anorexia, irritable bowel syndrome, communicative diseases, glaucoma and central nervous system disorders. The biosynthetic pathway of cannabinoids is also discussed. In short, this plant has a myriad of bioactive compounds which have the potential to increase the list of approved cannabinoids suitable for therapy.”

https://pubmed.ncbi.nlm.nih.gov/33267756/

https://www.eurekaselect.com/188617/article

Short-Term Medical Cannabis Treatment Regimens Produced Beneficial Effects among Palliative Cancer Patients

pharmaceuticals-logo“In the last decade the use of medical cannabis (MC) for palliative cancer treatment has risen. However, the choice between products is arbitrary and most patients are using Tetrahydrocannabinol (THC)-dominant cannabis products.

In this study, we aimed to assess the short-term outcomes of MC treatment prescribed by oncologists in relation to the type of cannabis they receive.

A comparative analysis was used to assess the differences in treatment effectiveness and safety between THC-dominant (n = 56, 52%), cannabidiol (CBD)-dominant (n = 19, 18%), and mixed (n = 33, 30%) MC treatments. Oncology patients (n = 108) reported on multiple symptoms in baseline questionnaires, initiated MC treatment, and completed a one-month follow-up.

Most parameters improved significantly from baseline, including pain intensity, affective and sensory pain, sleep quality and duration, cancer distress, and both physical and psychological symptom burden. There was no significant difference between the three MC treatments in the MC-related safety profile. Generally, there were no differences between the three MC treatments in pain intensity and in most secondary outcomes.

Unexpectedly, CBD-dominant oil treatments were similar to THC-dominant treatments in their beneficial effects for most secondary outcomes. THC-dominant treatments showed significant superiority in their beneficial effect only in sleep duration compared to CBD-dominant treatments.

This work provides evidence that, though patients usually consume THC-dominant products, caregivers should also consider CBD-dominant products as a useful treatment for cancer-related symptoms.”

https://pubmed.ncbi.nlm.nih.gov/33265945/

https://www.mdpi.com/1424-8247/13/12/435

Perioperative Cannabis as a Potential Solution for Reducing Opioid and Benzodiazepine Dependence

See the source image“Cannabis is increasingly being used for medicinal purposes but remains outside Western medical practice. Data on perioperative use and outcomes are scarce. Few surgeons receive training regarding legal endorsement, reported medicinal benefits, and potential risks, making it difficult to advise patients. Guidelines and additional research are needed.

Observations: It is legal to recommend cannabis, which can be obtained in states with medical cannabis programs. There are many methods of consumption, oral being the safest. Activity is primarily through Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) via cannabinoid receptors, which may be potentiated when taken together in the plant or plant extract. The known effects of cannabis on inflammation and malignancy are largely limited to laboratory experiments. However, there are higher-quality data to support adjunctive use of cannabis for relief of pain, nausea, and insomnia, which may be useful postoperatively and could potentially decrease reliance on opiates and benzodiazepines. There are prospective trials in surgical patients, but no reported data regarding surgical complications or other surgical outcomes. Currently, cannabis is regulated differently than other controlled substances, and there are issues with purity/homogeneity, making it difficult for surgeons to accept or significantly explore its medical benefits.

Conclusions and relevance: Recommendations are made for surgeons advising patients who use cannabis based on the limited existing data. While cannabis likely has some therapeutic benefits, it must be treated as other medical controlled substances to truly elucidate its role in surgical patient care.”

https://pubmed.ncbi.nlm.nih.gov/33263719/

https://jamanetwork.com/journals/jamasurgery/article-abstract/2773526

Multi-Target Effects of the Cannabinoid CP55940 on Familial Alzheimer’s Disease PSEN1 E280A Cholinergic-Like Neurons: Role of CB1 Receptor

Get IOS Press NewsAlzheimer’s disease (AD) is characterized by structural damage, death, and functional disruption of cholinergic neurons (ChNs) as a result of intracellular amyloid-β (Aβ) aggregation, extracellular neuritic plaques, and hyperphosphorylation of protein tau (p-Tau) overtime.

Objective: To evaluate the effect of the synthetic cannabinoid CP55940 (CP) on PSEN1 E280A cholinergic-like nerve cells (PSEN1 ChLNs)-a natural model of familial AD.

Results: CP in the presence of both inverse agonists (hereafter SR) almost completely inhibits the aggregation of intracellular sAβPPβf and p-Tau, increases ΔΨm, decreases oxidation of DJ-1Cys106-SH residue, and blocks the activation of c-Jun, p53, PUMA, and caspase-3 independently of CB1Rs signaling in mutant ChLNs. CP also inhibits the generation of reactive oxygen species partially dependent on CB1Rs. Although CP reduced extracellular Aβ 42, it was unable to reverse the Ca2 + influx dysregulation as a response to acetylcholine stimuli in mutant ChLNs. Exposure to anti-Aβ antibody 6E10 (1:300) in the absence or presence of SR plus CP completely recovered transient [Ca2 +]i signal as a response to acetylcholine in mutant ChLNs.

Conclusion: Taken together our findings suggest that the combination of cannabinoids, CB1Rs inverse agonists, and anti-Aβ antibodies might be a promising therapeutic approach for the treatment of familial AD.”

https://pubmed.ncbi.nlm.nih.gov/33252082/

“It is therefore proposed that combinations of cannabinoids, anti-Aβ 42 antibodies (e.g., crenezumab), and CB1 inverse agonists might be a promising multi-target drugs for therapy in the early treatment of FAD PSEN 1 E280A ChLNs neurodegeneration.”

https://content.iospress.com/articles/journal-of-alzheimers-disease/jad201045

Use of Cannabis for Self-Management of Chronic Pelvic Pain

 View details for Journal of Women's Health cover image“Chronic pelvic pain (CPP) affects up to 15% of women in the United States. The endocannabinoid system is a potential pharmacological target for pelvic pain as cannabinoid receptors are highly expressed in the uterus and other nonreproductive tissues.

We hypothesize that cannabis use is common for self-management of CPP, and our primary objective was to determine the prevalence of cannabis use in this population.

Results: A total of 240 patients were approached, with 113 responses (47.1% response rate). There were 26 patients who used cannabis (23%). The majority used at least once per week (n = 18, 72%). Most users (n = 24, 96%) reported improvement in symptoms, including pain, cramping, muscle spasms, anxiety, depression, sleep disturbances, libido, and irritability. Over one-third (35%) stated that cannabis use decreased the number of phone calls or messages sent to their provider, and 39% reported decreased number of clinical visits. Side effects, including dry mouth, sleepiness, and feeling “high,” were reported by 84% (n = 21).

Conclusions: Almost one-quarter of patients with CPP report regular use of cannabis as an adjunct to their prescribed therapy. Although side effects are common, most users report improvement in symptoms. Our study highlights the potential of cannabis as a therapeutic option for patients with CPP.”

https://pubmed.ncbi.nlm.nih.gov/33252316/

https://www.liebertpub.com/doi/10.1089/jwh.2020.8737

Consensus-Based Recommendations for Titrating Cannabinoids and Tapering Opioids for Chronic Pain Control

International Journal of Clinical Practice“Opioid misuse and overuse has contributed to a widespread overdose crisis and many patients and physicians are considering medical cannabis to support opioid tapering and chronic pain control. Using a five-step modified Delphi process, we aimed to develop consensus-based recommendations on: 1) when and how to safely initiate and titrate cannabinoids in the presence of opioids, 2) when and how to safely taper opioids in the presence of cannabinoids, and 3) how to monitor patients and evaluate outcomes when treating with opioids and cannabinoids.

Results: In patients with chronic pain taking opioids not reaching treatment goals, there was consensus that cannabinoids may be considered for patients experiencing or displaying opioid-related complications, despite psychological or physical interventions. There was consensus observed to initiate with a cannabidiol (CBD)-predominant oral extract in the daytime and consider adding tetrahydrocannabinol (THC). When adding THC, start with 0.5-3 mg, and increase by 1-2 mg once or twice weekly up to 30-40 mg/day. Initiate opioid tapering when the patient reports a minor/major improvement in function, seeks less as-needed medication to control pain, and/or the cannabis dose has been optimized. The opioid tapering schedule may be 5%-10% of the morphine equivalent dose (MED) every 1 to 4 weeks. Clinical success could be defined by an improvement in function/quality of life, a ≥ 30% reduction in pain intensity, a ≥ 25% reduction in opioid dose, a reduction in opioid dose to < 90 mg MED, and/or reduction in opioid-related adverse events.

Conclusions: This five-stage modified Delphi process led to the development of consensus-based recommendations surrounding the safe introduction and titration of cannabinoids in concert with tapering opioids.”

https://pubmed.ncbi.nlm.nih.gov/33249713/

https://onlinelibrary.wiley.com/doi/10.1111/ijcp.13871

Cannabis and its Constituents for Cancer: History, Biogenesis, Chemistry and Pharmacological Activities

Pharmacological Research “Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant.

Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate.

Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients.

Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.”

https://pubmed.ncbi.nlm.nih.gov/33246167/

https://www.sciencedirect.com/science/article/abs/pii/S1043661820316108?via%3Dihub

Use of Cannabinoids to Treat Acute Respiratory Distress Syndrome and Cytokine Storm Associated with Coronavirus Disease-2019

Frontiers in Pharmacology (@FrontPharmacol) | Twitter“Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2. A significant proportion of COVID-19 patients develop Acute Respiratory Distress Syndrome (ARDS) resulting from hyperactivation of the immune system and cytokine storm, which leads to respiratory and multi-organ failure, and death. Currently, there are no effective treatments against hyperimmune syndrome and ARDS.

We propose that because immune cells express cannabinoid receptors and their agonists are known to exhibit potent anti-inflammatory activity, targeting cannabinoid receptors, and endocannabinoids deserve intense investigation as a novel approach to treat systemic inflammation, cytokine storm, and ARDS in patients with COVID-19.”

https://pubmed.ncbi.nlm.nih.gov/33240092/

“The fact that cells of the immune system produce endocannabinoids and express both CB1 and CB2 cannabinoid receptors provides unique opportunities into investigating how the cannabinoid system can be engineered to suppress inflammation using both exogenous and endogenous cannabinoids. Because cannabinoids are potent suppressors of inflammation as evidenced by their ability to suppress cytokine storm in animal models, they may serve as novel therapeutic agents to treat cytokine storm and ARDS that are seen in patients with or without COVID-19. There is a dire need for novel anti-inflammatory agents that exert broad spectrum cytokine suppression associated with ARDS considering that currently up to 40% of such patients, including those with COVID-19, die because currently there are no FDA-approved drugs that are highly effective against cytokine storm and ARDS.”

https://www.frontiersin.org/articles/10.3389/fphar.2020.589438/full

Cannabis in Parkinson’s Disease: The Patients’ View

IOS Press | Impacting the World of ScienceLittle is known about the patients’ view on treatment with medical cannabis (MC) for Parkinson’s disease (PD).

Objective: To assess the PD community’s perception of MC and patients’ experience with MC.

Results: Overall, 1.348 questionnaires (1.123 nationwide, 225 local) were analysed. 51% of participants were aware of the legality of MC application, 28% of various routes of administration (ROA) and 9% of the difference between delta9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). PD-related cannabis use was reported by 8.4% of patients and associated with younger age, living in large cities and better knowledge about the legal and clinical aspects of MC. Reduction of pain and muscle cramps was reported by more than 40% of cannabis users. Stiffness/akinesia, freezing, tremor, depression, anxiety and restless legs syndrome subjectively improved for more than 20% and overall tolerability was good. Improvement of symptoms was reported by 54% of users applying oral CBD and 68% inhaling THC-containing cannabis. Compared to CBD intake, inhalation of THC was more frequently reported to reduce akinesia and stiffness (50.0% vs. 35.4%; p < 0.05). Interest in using MC was reported by 65% of non-users.

Conclusion: MC is considered as a therapeutic option by many PD patients. Nevertheless, efficacy and different ROA should further be investigated.”

https://pubmed.ncbi.nlm.nih.gov/33216043/

https://content.iospress.com/articles/journal-of-parkinsons-disease/jpd202260

CB2 receptor-selective agonists as candidates for targeting infection, inflammation, and immunity in SARS-CoV-2 infections

“The COVID-19 pandemic caused by SARS-CoV-2 is a deadly disease afflicting millions. The pandemic continues affecting population due to nonavailability of drugs and vaccines. The pathogenesis and complications of infection mainly involve hyperimmune-inflammatory responses. Thus, therapeutic strategies rely on repurposing of drugs aimed at reducing infectivity and inflammation and modulate immunity favourably.

Among, numerous therapeutic targets, the endocannabinoid system, particularly activation of cannabinoid type-2 receptors (CB2R) emerged as an important one to suppress the hyperimmune-inflammatory responses. Recently, potent antiinflammatory, antiviral and immunomodulatory properties of CB2R selective ligands of endogenous, plant, and synthetic origin were showed mediating CB2R selective functional agonism.

CB2R activation appears to regulate numerous signaling pathways to control immune-inflammatory mediators including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Many CB2R ligands also exhibit off-target effects mediating activation of PPARs, opioids, and TRPV, suggestive of adjuvant use with existing drugs that may maximize efficacy synergistically and minimize therapeutic doses to limit adverse/ side effects.

We hypothesize that CB2R agonists, due to immunomodulatory, antiinflammatory, and antiviral properties may show activity against COVID-19. Based on the organoprotective potential, relative safety, lack of psychotropic effects, and druggable properties, CB2R selective ligands might make available promising candidates for further investigation.”

https://pubmed.ncbi.nlm.nih.gov/33190277/

https://onlinelibrary.wiley.com/doi/10.1002/ddr.21752

image