Mechanisms and strategic prospects of cannabinoids use: Potential applications in antimicrobial food packaging-A review

pubmed logo

“This review focuses on antimicrobial packaging for food safety, critically examining the activity and efficacy of cannabinoids against commonly found microorganisms and exploring their antimicrobial mechanisms.

Specifically, the review considers cannabinoids derived from industrial hemp plants, which are characterized by low levels of psychoactive components. It also outlines viable strategies to control the sustained release of cannabinoids from the packaging, enabling extended storage and enhanced safety of food products.

Research demonstrates that cannabinoids are effective against both foodborne bacteria and fungi, with their antimicrobial action primarily attributed to microbial membrane instability.

Cannabinoids can be utilized to prepare effective antimicrobial films and edible coatings; however, the number of studies in this area remains limited.

The potential of cannabinoids to contribute to intelligent packaging systems is also discussed, with an emphasis on the regulatory aspects and challenges associated with incorporating cannabinoids into food packaging. Finally, the review identifies future research directions to address current limitations and advance hemp-based antimicrobial food packaging solutions.”

https://pubmed.ncbi.nlm.nih.gov/39840610/

https://ift.onlinelibrary.wiley.com/doi/10.1111/1541-4337.70113

Therapeutic potential of cannabidiol polypharmacology in neuropsychiatric disorders

pubmed logo

“Cannabidiol (CBD), the primary non-intoxicating compound in cannabis, is currently approved for treating rare, treatment-resistant seizures.

Recent preclinical research suggests that CBD’s multifaceted mechanisms of action in the brain, which involve multiple molecular targets, underlie its neuroprotective, anti-inflammatory, anxiolytic, and antipsychotic effects. Clinical trials are also exploring CBD’s therapeutic potential beyond its current uses.

This review focuses on CBD’s polypharmacological profile and discusses the latest preclinical and clinical findings regarding its efficacy in neuropsychiatric disorders.

Existing evidence suggests that CBD’s ability to modulate multiple signaling pathways may benefit neuropsychiatric disorders, and we propose further research areas to clarify its mechanisms, address data gaps, and refine its therapeutic indications.”

https://pubmed.ncbi.nlm.nih.gov/39837749/

https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(24)00271-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614724002712%3Fshowall%3Dtrue

Exploring the antifungal potential of Cannabis sativa-derived stilbenoids and cannabinoids against novel targets through in silico protein interaction profiling

pubmed logo

“Cannabinoid and stilbenoid compounds derived from Cannabis sativa were screened against eight specific fungal protein targets to identify potential antifungal agents.

The proteins investigated included Glycosylphosphatidylinositol (GPI), Enolase, Mannitol-2-dehydrogenase, GMP synthase, Dihydroorotate dehydrogenase (DHODH), Heat shock protein 90 homolog (Hsp90), Chitin Synthase 2 (CaChs2), and Mannitol-1-phosphate 5-dehydrogenase (M1P5DH), all of which play crucial roles in fungal survival and pathogenicity.

This research evaluates the binding affinities and interaction profiles of selected cannabinoids and stilbenoids with these eight proteins using molecular docking and molecular dynamics simulations. The ligands with the highest binding affinities were identified, and their pharmacokinetic profiles were analyzed using ADMET analysis. The results indicate that GMP synthase exhibited the highest binding affinity with Cannabistilbene I (-9.1 kcal/mol), suggesting hydrophobic solid interactions and multiple hydrogen bonds. Similarly, Chitin Synthase 2 demonstrated significant binding with Cannabistilbene I (-9.1 kcal/mol). In contrast, ligands such as Cannabinolic acid and 8-hydroxycannabinolic acid exhibited moderate binding affinities, underscoring the variability in interaction strengths among different proteins.

Despite promising in silico results, experimental validation is necessary to confirm therapeutic potential. This research lays a crucial foundation for future studies, emphasizing the importance of evaluating binding affinities, pharmacokinetic properties, and multi-target interactions to identify promising antifungal agents.”

https://pubmed.ncbi.nlm.nih.gov/39834844/

“This study provides a comprehensive assessment of how selected cannabinoid and stilbenoid compounds interact with eight different fungal proteins, highlighting the promising potential of these compounds as antifungal agents. In conclusion, this study highlights the therapeutic potential of cannabinoids and stilbenoids and provides a solid foundation for the development of new antifungal therapies.”

https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2024.1515424/full

Investigation of Cannabidiol’s Protective Effects on Cadmium-Induced Toxicity in Mice

pubmed logo

“Current chelation treatments used for cadmium poisoning may cause some serious side effects. Thus, safer novel treatments could be promising for clinical use.

This study evaluated the effects of cannabidiol on Cd toxicity.

Four groups of 10 mice were formed: Groups I and III were cadmium-free, while groups II and IV received 50 mg/L cadmium in drinking water. Groups III and IV received daily cannabidiol (25 mg/kg) via intragastric gavage. After 30 days, the animals were killed, and blood and tissue samples were collected. Oxidative stress and inflammation markers, including glutathione, catalase, myeloperoxidase, TNF-α, IL-1β and IL-6, were analysed using ELISA. Additionally, histological evaluations of the liver, kidney and testis were performed. Cadmium exposure reduced glutathione and catalase levels in the blood, liver, kidney and testis, while increasing myeloperoxidase.

Cannabidiol mitigated these effects on oxidative stress markers. Cannabidiol also reduced the increase in proinflammatory cytokines. Histopathological analysis revealed reduced liver and kidney damage in cannabidiol-treated groups compared to cadmium-only groups. In addition, histopathological evaluation showed CBD had no protective effect on the testicular tissue against Cd toxicity.

Our results indicate that cannabidiol protects against some toxic effects of cadmium. If confirmed by future studies, cannabidiol may be proposed as a novel treatment for cadmium toxicity.”

https://pubmed.ncbi.nlm.nih.gov/39832793/

“Cadmium (Cd) is a heavy metal that can have toxic effects on multiple organs. Chelation treatments that are used for treating Cd toxicity can have serious side effects, which limit their use. This study aimed to investigate cannabidiol (CBD), a non-psychoactive compound derived from hemp, for its potential to reduce Cd toxicity.

Our experiments on mice showed CBD had significant protective effects against Cd-induced tissue damage in the liver and the kidneys by reducing oxidative stress and inflammation. These findings suggest that CBD can be explored as a safer treatment option for Cd toxicity in a clinical setting.”

https://onlinelibrary.wiley.com/doi/10.1111/bcpt.14131

Cannabinoid receptor 1 ligands: Biased signaling mechanisms driving functionally selective drug discovery

pubmed logo

“G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects.

Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases.

This review examines the structural conformations of CB1 coupling to different signaling pathways and explores the mechanisms underlying biased signaling, which are critical for the design of functionally selective ligands. We discuss the structure-function relationships of endogenous cannabinoids (eCBs), phytocannabinoids, and synthetic cannabinoid ligands with biased properties. Challenges such as the complexity of ligand bias screening, the limited availability of distinctly biased ligands, and the variability in receptor signaling profiles in vivo have hindered clinical progress.

Although the therapeutic potential of biased ligands in various clinical conditions remains in its infancy, retrospective identification of such molecules provides a strong foundation for further development. Recent advances in CB1 crystallography, particularly insights into its conformations with G proteins and β-arrestins, now offer a framework for structure-based drug design. While there is still a long way to go before biased CB1 ligands can be widely used in clinical practice, ongoing multidisciplinary research shows promise for achieving functional selectivity in targeting specific pathways.

These progresses could lead to the development of safer and more effective cannabinoid-based therapies in the future.”

https://pubmed.ncbi.nlm.nih.gov/39828030/

https://www.sciencedirect.com/science/article/abs/pii/S0163725825000075?via%3Dihub

∆9-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo

pubmed logo

“Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆9-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

Methods: Human ASCs were exposed to increasing concentrations of THC. Resazurin conversion was applied to investigate the effect on metabolic activity, cell number was assessed by crystal violet staining, tri-linear differentiation was evaluated by specific colorimetric approaches, and the release of growth factors was analyzed by ELISA. Two groups of mice were treated daily either with a low dose of THC (3 mg/kg) or a vehicle solution. After 3 weeks, adipose tissue was obtained from excised fat deposits, homogenized and tested for growth factor contents.

Results: THC decreased ASC proliferation but increased metabolic activity as well as adipogenic and chondrogenic differentiation. A low concentration of THC (1 µM) enhanced the growth factor release by ASCs. The concentration of these cytokines was also increased in adipose tissue of mice treated with THC.

Conlusion: Our results indicate that chronic activation of the endocannabinoid system promoted differentiation and growth factor release of ASCs, which could be of specific value for enhancing the regenerative potential of adipose tissue.”

https://pubmed.ncbi.nlm.nih.gov/39825991/

“Our findings may offer a new approach for improved application of adipose tissue in regenerative medicine.”

https://link.springer.com/article/10.1007/s13770-024-00692-8

[Impact of dronabinol shortage on a population of chronic pain patients: A retrospective observational study]

pubmed logo

“Objective: A supply shortage of dronabinol occurred between December 2023 and February 2024, forcing chronic pain patients to discontinue this treatment. We assessed the impact of this shortage on patients in our hospital.

Method: A retrospective observational study of patients treated with dronabinol was conducted. Collected data included socio-demographic, pharmacological and clinical data. Pain intensity and its interference, the intensity of other pain dimensions (mood, relationship with others, etc.) and quality of sleep were collected before discontinuation (dronabinol dosage balanced, M0) and at the end of discontinuation (dronabinol stopped for several weeks, M3). The patient’s perception of his state of health evolution was collected at the end of the shortage.

Results: Health deterioration was reported by 86% of patients after 3 months of rupture. Pain intensity and its interference with patients’ daily lives increased significantly. Patients’ sleep deteriorated significantly. The number of patients with permanent pain increased 5-fold (n=2 at M0 and n=10 at M3). The number of patients with more than 20 painful attacks per 24hours increased 2-fold (n=2 at M0 and n=4 at M3).

Conclusion: Although data on the efficiency of dronabinol are currently limited, this supply disruption has had negative clinical consequences for our patients. With drug shortages multiplying in recent years, the marketing of new specialties and therefore the availability of therapeutic alternatives could help reduce the clinical impact of a possible new dronabinol shortage in these refractory chronic pain patients.”

https://pubmed.ncbi.nlm.nih.gov/39824703/

https://www.sciencedirect.com/science/article/abs/pii/S0040595724002191?via%3Dihub

“Dronabinol has preferential antileukemic activity in acute lymphoblastic and myeloid leukemia with lymphoid differentiation patterns”

https://pubmed.ncbi.nlm.nih.gov/26775260/

Evaluation of the Antibacterial Potential of Ethanolic Cannabis sativa L. (Hang Kra Rog Phu Phan ST1) Extracts Against Human Pathogenic Bacteria

pubmed logo

“Background and Objective: Amid the escalating challenge of antibiotic resistance, the exploration of new sources has become essential, with plants serving as a promising reservoir of bioactive compounds.

Cannabis sativa has attracted significant research interest for its antimicrobial properties and broad applications in medicine, industry and nutrition.

This study aimed to investigate the antibacterial activity of ethanolic extracts from the stems and leaves of the Hang Kra Rog Phu Phan ST1 strain against twelve human pathogenic bacteria.

Materials and Methods: Stems and leaves from the Hang Kra Rog Phu Phan ST1 strain were subjected to ethanol extraction. The primary antibacterial activity of ethanolic extracts from Tanao Si Kan Dang RD1 was assessed using the disc diffusion method, while the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined via the broth microdilution method. The inhibition zone diameter (mm) was analyzed using Duncan’s Multiple Range Test (DMRT) with the SAS software.

Results: The findings revealed that the ethanolic extract from the leaves of Hang Kra Rog Phu Phan ST1 produced the largest inhibition zone diameter of 10.00 mm against <i>Bacillus subtilis</i> TISTR 008. The MIC and MBC of the leaf extract showed the lowest values of 0.09 and 0.19 mg/mL, respectively, recorded against <i>Staphylococcus aureus</i> TISTR 1466.

Conclusion: This is the first report on the antibacterial activity of the ethanolic extracts from the leaves and stems of Hang Kra Rog Phu Phan ST1, which offers potential benefits for developing natural antibiotic drugs to combat infections caused by the tested pathogenic bacteria.”

https://pubmed.ncbi.nlm.nih.gov/39820562/

https://scialert.net/abstract/?doi=pjbs.2025.1.7

Cannabidiol abrogates cue-induced anxiety associated with normalization of mitochondria-specific transcripts and linoleic acid in the nucleus accumbens shell

pubmed logo

“Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant.

This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders. Yet, CBD’s anxiolytic effects are mixed with some studies reporting little to no impact on trait anxiety but significant reductions in pathological anxiety with suggestions that CBD’s effect may relate to triggered or cue-induced behavior.

Here, we studied the effects of CBD on cued and non-cued behaviors and related neurobiological underpinnings. To investigate the effect of CBD on cue-induced anxiety, male rats underwent a fear conditioning protocol (odor associated with shock) followed by assessments of avoidance behavior. CBD (10 mg/kg) was administered 1 h prior to anxiety assessments. To understand molecular mechanisms associated with behavior, we investigated the transcriptome and lipid profile of the nucleus accumbens shell (NAcSh), a structure implicated in cue-mediated behaviors and aversion.

Administration of CBD significantly reduced avoidance behavior, but only in animals repeatedly exposed to a shock-paired cue. CBD did not affect behavior in animals exposed to neutral cue or encoding of the cue behavioral response. RNA sequencing revealed substantial impact of the shock-paired cue in control animals, recruiting mechanisms ranging from cytoskeletal dynamics to mitochondria dysfunction. The shock-paired cue also resulted in elevated linoleic acid in vehicle animals which correlated with anxiety-like behavior. CBD either reversed or normalized these cue-induced molecular phenotypes. CBD also recruited lipid networks which correlated with transcripts involved in synaptic plasticity, signaling, and epigenetic mechanisms.

These results suggest that CBD may specifically alleviate salient, conditioned anxiety and normalize related biological mechanisms in the NAcSh which may guide therapeutic interventions for anxiety disorders.”

https://pubmed.ncbi.nlm.nih.gov/39815058/

https://www.nature.com/articles/s41380-024-02881-2

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders

pubmed logo

“In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons.

Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

Despite considerable preclinical efforts, an agreement on the efficacy of endocannabinoid-targeting compounds for treating drug substance use disorders in humans has not been reached. In the following chapter, we will summarize preclinical and clinical evidence addressing the therapeutic potential of cannabinoids and endocannabinoid-targeting compounds in substance use disorders.

To bridge the gap between animal and clinical research, we capitalize on studies evaluating the impact of endocannabinoid-targeting compounds in relevant settings, such as the management of drug relapse.

Finally, we discuss the therapeutic potential of novel cannabinoid compounds that hold promise for treating substance use disorders.”

https://pubmed.ncbi.nlm.nih.gov/39813001/

https://link.springer.com/chapter/10.1007/7854_2024_551