Deciphering the Phytochemical Potential of Hemp Hairy Roots: A Promising Source of Cannabisins and Triterpenes as Bioactive Compounds

pubmed logo

“Cannabis sativa L., specifically hemp, is a traditional herbaceous plant with industrial and medicinal uses.

While much research has focused on cannabinoids and terpenes, the potential of hemp roots is less explored due to bioproduction challenges. Still, this material is rich in bioactive compounds and demonstrates promising anti-inflammatory, antimicrobial, and antioxidant properties. Biotechnological methods, such as hairy root cultures, enable the efficient production of specialized metabolites while avoiding the issues of outdoors cultures. Despite these benefits, the chemical diversity understanding of hemp hairy roots remains limited.

In this study, we conducted an extensive NMR and LC/MS chemical profiling of hemp hairy roots to determine their chemical composition, revealing the presence of cannabisins for the first time. We then investigated the accumulation of cannabisins and triterpenes in both hemp hairy roots and hemp aeroponic roots.

Our findings reveal that hairy roots produce 12 times more cannabisins and 6 times more triterpenes than aeroponic roots, respectively, in addition to yielding 3 times more biomass in bioreactors. Preliminary bioassays also suggest antioxidant and antifungal properties. This research underscores the potential of hemp hairy roots as a valuable source of specialized metabolites and calls for further exploration into their bioactive compounds and applications.”

https://pubmed.ncbi.nlm.nih.gov/39683949/

“This study highlights the unique phytochemical profile of hemp hairy roots and underscores their potential for various applications. The advantages offered by hairy root cultures, such as improved productivity of biomass and metabolites, better reliability due to in vitro controlled culture and genetic consistency, and water- and energy-saving potential, make them a promising avenue for further exploration and utilization in industrial and medicinal contexts.”

https://www.mdpi.com/1420-3049/29/23/5792

Exploring the Biological Activity of Phytocannabinoid Formulations for Skin Health Care: A Special Focus on Molecular Pathways

pubmed logo

“Recent advancements have highlighted the potential of cannabis and its phytocannabinoids (pCBs) in skin health applications.

These compounds, through their interaction with the endocannabinoid system (ECS), show promise for skin health products. Their ability to regulate inflammation, oxidative stress and cell proliferation makes them useful in addressing skin problems such as inflammation, scarring, healing, acne and aging, positioning them as valuable tools for innovative skincare solutions.

In the present work, the cellular and molecular effects of proprietary pCB-based formulations on ECS modulation, inflammation and skin regeneration were investigated.

Using human dermal fibroblasts (HDF) and keratinocytes (HaCaT), the effect of formulations in both pre-treatment and treatment scenarios following exposure to stress-inducing agents was assessed. Key molecular markers were analyzed to tackle their efficacy in mitigating inflammation and promoting structural integrity and regeneration.

In vitro results showed that these formulations significantly reduced inflammation, promoted skin regeneration and improved structural functions. In vivo studies confirmed that the formulations were well-tolerated and led to noticeable improvements in skin health, including enhanced barrier function.

This study demonstrates the safety and efficacy of pCB-based formulations for cosmeceutical applications. By combining molecular analysis with in vivo testing, this research provides new insights into the therapeutic potential of pCBs for managing various skin conditions.”

https://pubmed.ncbi.nlm.nih.gov/39684852/

“This study confirms the safety and efficacy of pCB-based formulations for skin applications, highlighting their potential to enhance regeneration and structural processes. The findings underscore the promise of cannabis-based products in cosmetics and dermatology, meeting the rising demand for natural, effective skincare solutions and shaping the future of modern skincare and therapeutic approaches.”

https://www.mdpi.com/1422-0067/25/23/13142

Anti-staphylococcal activity of soilless cultivated cannabis across the whole vegetation cycle under various nutritional treatments in relation to cannabinoid content

Scientific Reports

“Antibiotic resistance in staphylococcal strains and its impact on public health and agriculture are global problems. The development of new anti-staphylococcal agents is an effective strategy for addressing the increasing incidence of bacterial resistance.

In this study, ethanolic extracts of Cannabis sativa L. made from plant parts harvested during the whole vegetation cycle under various nutritional treatments were assessed for in vitro anti-staphylococcal effects.

The results showed that all the cannabis extracts tested exhibited a certain degree of growth inhibition against bacterial strains of Staphylococcus aureus, including antibiotic-resistant and antibiotic-sensitive forms. The highest antibacterial activity of the extracts was observed from the 5th to the 13th week of plant growth across all the nutritional treatments tested, with minimum inhibitory concentrations ranging from 32 to 64 µg/mL. Using HPLC, Δ9-tetrahydrocannabinolic acid (THCA) was identified as the most abundant cannabinoid in the ethanolic extracts. A homolog of THCA, tetrahydrocannabivarinic acid (THCVA), reduced bacterial growth by 74%.

These findings suggest that the cannabis extracts tested in this study can be used for the development of new anti-staphylococcal compounds with improved efficacy.”

“In summary, the present study demonstrated the antistaphylococcal activity of ethanolic extracts of C. sativa L. against both of the bacterial strains tested, MSSA and MRSA, across all the vegetation stages, especially from the 5th to the 13th week. The various nutritional treatments had no impact on the resulting antibacterial effect.”

https://www.nature.com/articles/s41598-024-54805-3

Cost-efficient analysis of cannabinoids in therapeutic oils using HPLC with UV and mass spectrometry detection

pubmed logo

“Cannabis oil, derived from Cannabis sativa plants, is increasingly used for therapeutic purposes across a wide range of diseases.

Accurate quantification of cannabinoids is essential, especially for cannabis products sourced from informal markets where supply origins are uncertain.

This study aimed to develop a cost-effective, robust analytical methodology using liquid chromatography in combination with UV- and mass detectors for the quantification of key cannabinoids (THC, CBD and CBN) and the identification of THCA and CBDA.

Utilising an isocratic flow, the method achieved effective separation within 17 min, ensuring simplicity and reproducibility. The methodology validation was aligned with ICH guidelines’ requirements for selectivity, linearity, precision, accuracy, and matrix effects.

Successful application of this method to both homemade and commercial cannabis oil samples underscores its relevance for adjusting therapeutic doses and optimising CBD:THC ratios for specific disease treatments.”

https://pubmed.ncbi.nlm.nih.gov/39671430/

https://www.tandfonline.com/doi/full/10.1080/14786419.2024.2439024

Prenatal cannabis exposure and the risk of subsequent maltreatment

pubmed logo

“Background: Parental substance use can increase the risk of child maltreatment.

Objective: The purpose of this study was to assess racial bias in newborn drug testing and to investigate the association between prenatal tetrahydrocannabinol (THC) exposure and subsequent child maltreatment.

Participants and setting: This retrospective cohort study (n = 35,437) linked University of Michigan Hospital birth data and Michigan Department of Health and Human Services child maltreatment data relative to a 2018 policy change. Prior to 2018, prenatal THC exposure was routinely substantiated as physical abuse; after 2018 THC exposure was investigated but not automatically substantiated.

Methods: We defined prenatal THC exposure as a positive newborn meconium drug test for THC. The primary outcome was a substantiated Child Protective Services (CPS) report of maltreatment before and after the policy change. Demographic variables included parent age, race, ethnicity, zip code and insurance type. Covariates included prenatal urine drug test orders and results, and newborn drug test orders and results. Regression models estimated the rate of subsequent maltreatment and racial disparities associated with newborn testing.

Results: Regression analyses indicated that Black and multiracial newborns were significantly more likely to be tested for substance exposure at birth. Newborns with a test positive for THC only were not more likely to experience maltreatment after the policy change as compared with newborns that tested negative and newborns not tested.

Conclusions: The evidence strongly supports a policy to end routine CPS investigations for cannabis exposure and eliminate racially biased drug testing practices.”

https://pubmed.ncbi.nlm.nih.gov/39667085/

https://www.sciencedirect.com/science/article/abs/pii/S0145213424005684?via%3Dihub

Cannabidiol (CBD) as an emerging nutraceutical ingredient from industrial hemp: regulation, production, extraction, nutraceutical properties, and functionality

pubmed logo

“Cannabidiol (CBD) in industrial hemp is a promising functional food ingredient with multifarious health benefits, including anticancer activity, antioxidant activity, anti-inflammatory properties, and anxiolytic effects.

In recent years, the application of CBD in the food industry has been emerging and several CBD fortified products are available across the globe. Currently, the scientific information associated with CBD are segregated, and there is a lack of connectivity between their recent explorations. Therefore, in this review, the findings associated with CBD that are crucial for extending its food applications are comprehensively discussed.

It begins by exploring the global regulatory landscape of CBD. Followingly, the factors that affect CBD production in the field, CBD isolation techniques from industrial hemp flowers, and their functional properties are comprehensively detailed. Importantly, this review examines reported delivery systems for enhancing the physicochemical properties and bioavailability of CBD, thus broadening its potential applications in the food industry.

Overall, this review would connect the patches of CBD information available from the field to food and would be resourceful for food scientists, regulatory agencies, and hemp farmers.”

https://pubmed.ncbi.nlm.nih.gov/39654401/

https://www.tandfonline.com/doi/full/10.1080/10408398.2024.2436130

Exploring β-caryophyllene: a non-psychotropic cannabinoid’s potential in mitigating cognitive impairment induced by sleep deprivation

pubmed logo

“Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders.

This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene’s ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB.

As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.”

https://pubmed.ncbi.nlm.nih.gov/39653971/

https://link.springer.com/article/10.1007/s12272-024-01523-z

“Beta-caryophyllene is a dietary cannabinoid.” https://www.ncbi.nlm.nih.gov/pubmed/18574142

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934


Marijuana Use and Complication Risk Following Tibia Shaft Fracture Fixation

pubmed logo

“Objectives: The aim of this study was to investigate the relationship between preoperative marijuana use and complications following tibia shaft fracture fixation.

Methods: Design: Retrospective cohort study.

Setting: Two academic Level I trauma centers.

Patient selection criteria: Adults age ≥18 years who underwent tibia shaft fracture (OTA/AO 42) fixation from 2014-2022 and had a minimum 3-months postoperative follow-up were included. Patients were considered marijuana users if they had current self-reported marijuana use or a urine toxicology screen positive for cannabinoids documented at initial presentation.

Outcome measures and comparisons: Bivariate statistics and multivariate regression were used to evaluate the effect of marijuana use on 90-day postoperative thromboembolic and surgical complications, unplanned readmissions, and emergency department (ED) visits. Complications related to fracture union were evaluated in patients with ≥ 6 months follow-up. Multivariate analysis controlled for tobacco use, open fracture, and American Society of Anesthesiologist class ≥ 3.

Results: Among 388 patients included in the study, the mean age was 37.6 years (range, 18-90), and most patients were men (66.5%). Ninety-six patients (25%) were identified as marijuana users. Marijuana users were significantly younger (30.5 years vs 40 years, P < .001) and more likely to be male (79% vs 62%, P = .002) and use tobacco currently (73% vs 31%, P < .001) than non-users. Marijuana users experienced higher rates of 90-day surgical complications (11.5% vs 4.8%, P = .030) and deep infection (8.3% vs 2.1%, P = .008) compared with non-users. No significant difference was observed between groups in the rates of thromboembolic complications, nonunion, or delayed union (P > .05). On multivariate analysis, marijuana use was not associated with odds of developing any 90-day surgical complication (OR 2.01; 95% CI 0.83-4.84) or deep infection (OR 2.97; 95% CI 0.95-9.25).

Conclusions: Preoperative marijuana use was not found to be associated with risk of thromboembolic, surgical, or fracture union-related complications in patients undergoing tibia shaft fracture fixation.”

https://pubmed.ncbi.nlm.nih.gov/39651897/

https://journals.lww.com/jorthotrauma/abstract/9900/marijuana_use_and_complication_risk_following.456.aspx

Phytoremediation Evaluation of Forever Chemicals using hemp (Cannabis sativa L.): Pollen Bioaccumulation and the Risk to Bees

pubmed logo

“Per- and polyfluoroalkyl substances (PFAS), often termed “forever chemicals,” are a diverse group of persistent fluorinated compounds, including the well-known perfluorooctanesulfonic acid (PFOS), which has been identified as lethal to bee larvae. However, the risk of PFAS exposure through pollen, a bee’s primary food source, has not been thoroughly investigated.

In controlled greenhouse experiments, Cannabis sativa L. (hemp) plants were cultivated in soil contaminated with eight PFAS compounds. Phytoremediation potential was assessed by measuring bioconcentration factors (BCF) in both the total above-ground biomass and pollen.

The study found that BCF for total PFAS in hemp pollen was significant (>20.8), with over 45% of the total PFAS uptake of around 3,248 μg/kg concentrated in the pollen. Based on these figures, the estimated daily intake (EDI) of PFOS for western honeybees (Apis mellifera) was found to be about 124.5 μg/kg body weight per day.

These findings underscore a critical global threat to pollinator health, with significant implications for agriculture and biodiversity.”

https://pubmed.ncbi.nlm.nih.gov/39638132/

Evidence for therapeutic use of cannabidiol for nail-patella syndrome-induced pain in a real-world pilot study

pubmed logo

“Nail-patella syndrome (NPS) is a rare genetic disease characterized by dysplastic nails, patella abnormalities, skeletal malformation, and chronic pain. Although chronic pain in NPS is mainly due to bone and musculoskeletal symptoms, it can also result from neurological dysfunction. Conventional analgesics are often insufficient to relieve NPS-associated chronic pain.

Cannabinoids, which act on the serotonergic and/or noradrenergic pain systems, may therefore represent valuable non-psychoactive alternatives for managing pain in these patients. The effectiveness and safety of synthetic cannabidiol (CBD) for the management of NPS-associated pain was assessed using real-world data from a pilot cohort of patients with NPS who received a 3-month treatment with oral CBD.

The treatment (median dose of 900 mg/day) was associated with a significant reduction in pain intensity (mean score of 7.04 ± 0.24 at initiation versus 4.04 ± 0.38 at 3 months, N = 28, p < 0.0001), which correlated with changes in the peripheral concentration of noradrenaline (r = 0.705, 95% CI [0.44-0.86], p < 0.0001).

Health-related quality of life and other NPS-associated symptoms also improved in most patients. CBD treatment was well tolerated and no elevations in liver enzyme levels were reported. Synthetic CBD therefore appears to be a safe and effective treatment option for managing NPS-associated chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/39627343/

“Oral treatment with synthetic CBD was associated with a significant reduction in pain in most of the patients with NPS included in our study, and led to improvements in most of the NPS-associated symptoms analyzed. Hence, synthetic oral CBD appears to be a safe and effective treatment option for NPS-associated pain, and may be an alternative to conventional analgesics for managing chronic pain in this pathology.”

https://www.nature.com/articles/s41598-024-79239-9