Cannabidiol for the Treatment of Cervical Spondyloarthritis-Related Pain: A Case Report

pubmed logo

“Spondyloarthritis (SA) is a chronic inflammatory disease that predominantly affects the spinal column. SA-related pain can be intense, persistent, and disabling. Studies with cannabis have been conducted involving patients with refractory epilepsy, multiple sclerosis, Parkinson’s disease, sleep disorders, and chronic pain.

Cannabidiol is the major non-psychotropic component of cannabis, has anti-inflammatory and analgesic properties, and exerts anxiolytic and mood-stabilizing effects. This paper reports a case of a 72-year-old male with SA, with mild stenoses of the spinal canal at C4-C5 and C5-C6 and stenoses of the left neural foramina at C3-C4, C4-C5, C5-C6, and C6-C7.

The use of cannabidiol in our patient achieved satisfactory results in the control of pain related to cervical spondyloarthritis.”

https://pubmed.ncbi.nlm.nih.gov/39295690/

https://www.cureus.com/articles/278440-cannabidiol-for-the-treatment-of-cervical-spondyloarthritis-related-pain-a-case-report#!/

Therapeutic potential of cannabis for surgical wound healing in rats

pubmed logo

“This study was conducted to evaluate the wound-healing activities of a Cannabis sativa L. plant extract and cannabidiol on incision wounds.

An incision was created and sutured in rats under anaesthesia. Routine wound care procedures were applied for 10 days, followed by histological wound examinations. The cellular bioactivities of the hemp extract and CBD were assessed for MCP-1, EGF, BFGF, IL-8, and COL-1 using ELISA on the rat skin wound healing activity. A one-way ANOVA was used for the data analysis.

The EGF values in the plasma were similar in the povidone-iodine, hemp seed oil, and hemp essential oil groups (P > 0.05). However, the EGF levels were lower in the CBD group compared to the other groups (P < 0.001, P < 0.005). The MCP-1 values in the hemp seed oil, hemp essential oil, and CBD were similar (P > 0.05), whereas povidone iodine exhibited lower MCP-1 levels compared to the other groups (P < 0.001, P < 0.005). It was determined that the plasma BFGF, IL-8, and COL 1 values of the groups were similar (P > 0.05).

To our knowledge, this study is the first to evaluate the effects of CBD, seed oil, and hemp leaf extract on incision wound healing. It demonstrates that hemp extract holds greater potential benefits for wound healing compared to CBD.”

https://pubmed.ncbi.nlm.nih.gov/39296630/

http://vetmed.agriculturejournals.cz/artkey/vet-202408-0002_therapeutic-potential-of-cannabis-for-surgical-wound-healing-in-rats.php

Bidirectional Effect of Long-Term Δ9-Tetrahydrocannabinol Treatment on mTOR Activity and Metabolome

pubmed logo

“Brain aging is associated with cognitive decline, reduced synaptic plasticity, and altered metabolism. The activity of mechanistic target of rapamycin (mTOR) has a major impact on aging by regulating cellular metabolism. Although reduced mTOR signaling has a general antiaging effect, it can negatively affect the aging brain by reducing synaptogenesis and thus cognitive functions. Increased mTOR activity facilitates aging and is responsible for the amnestic effect of the cannabinoid receptor 1 agonist Δ9-tetrahydrocannabinol (THC) in higher doses.

Long-term low-dose Δ9-THC had an antiaging effect on the brain by restoring cognitive abilities and synapse densities in old mice.

Whether changes in mTOR signaling and metabolome are associated with its positive effects on the aging brain is an open question. Here, we show that Δ9-THC treatment has a tissue-dependent and dual effect on mTOR signaling and the metabolome.

In the brain, Δ9-THC treatment induced a transient increase in mTOR activity and in the levels of amino acids and metabolites involved in energy production, followed by an increased synthesis of synaptic proteins. Unexpectedly, we found a similar reduction in the mTOR activity in adipose tissue and in the level of amino acids and carbohydrate metabolites in blood plasma as in animals on a low-calorie diet.

Thus, long-term Δ9-THC treatment first increases the level of energy and synaptic protein production in the brain, followed by a reduction in mTOR activity and metabolic processes in the periphery.

Our study suggests that a dual effect on mTOR activity and the metabolome could be the basis for an effective antiaging and pro-cognitive medication.”

https://pubmed.ncbi.nlm.nih.gov/39296258/

https://pubs.acs.org/doi/10.1021/acsptsci.4c00002

Cannabidiol modulation of immune cell function: in vitro insights and therapeutic implications for atopic dermatitis

pubmed logo

“Introduction: Cannabidiol (CBD) exhibits neuroprotective, anti-inflammatory, and immunomodulatory properties, making it a promising candidate for addressing inflammatory skin disorders like atopic dermatitis.

Aim: This study aimed to (i) investigate CBD’s impact on lymphocyte proliferation and lymphocyte viability; (ii) assess in vitro cytotoxicity U937 cells (a human promonocytic cell line) of CBD/cytotoxicity of CBD on U937 cells; (iii) provide insights into CBD immunomodulatory potential, and (iv) evaluate suitability of CBD for treating inflammatory skin conditions.

Material and methods: To this aim PBMCs from healthy donors were cultured with mitogen and two different CBD doses (0.1 and 1 mg/ml), assessing B and T cell proliferation through flow cytometry. CBD inhibited mitogen-induced lymphocyte proliferation, reducing the percentage of proliferating T and B cells. Notably, both CBD doses did not exhibit cytotoxicity on lymphocytes as revealed by viability assessment. We also analysed the effect of CBD on U937 cells using an optical microscopy approach. Interestingly, the higher dose of CBD exerted a cytotoxic effect on U937 cells, while the lower dose was well tolerated.

Results: We analysed the effect of an adjuvant treatment for atopic dermatitis with a CBD-containing cleansing cream in reducing itch. Notably, the treatment with the CBD-containing cleansing cream significantly reduced itch in patients suffering from atopic dermatitis.

Conclusions: These findings affirm CBD’s immunomodulatory characteristics, emphasizing its potential therapeutic application in inflammatory skin disorders.”

https://pubmed.ncbi.nlm.nih.gov/39290893/

https://www.termedia.pl/Cannabidiol-modulation-of-immune-cell-function-in-vitro-insights-and-therapeutic-implications-for-atopic-dermatitis,7,54606,0,1.html

Measuring the Impact of Medical Cannabis Law Adoption on Employer-Sponsored Health Insurance Costs: A Difference-in-Difference Analysis, 2003-2022

pubmed logo

“Introduction: Recent studies suggest that medical cannabis laws may contribute to a relative reduction in health insurance costs within the individual health insurance markets at the state level. We investigated the effects of adopting a medical cannabis law on the cost of employer-sponsored health insurance in the United States.

Methods: We analyzed state-level data from the Medical Expenditure Panel Survey-Insurance Component (MEPS-IC) Private Sector spanning from 2003 to 2022. The outcomes included log-transformed average total premium costs per employee for single, employee-plus-one, and family coverage plans. We utilized the Sun and Abraham (J Econometr 225(2):175-199, 2021) difference-in-difference (DiD) method, looking at the overall DiD and event-study DiD. Models were adjusted for various state-level demographics and dichotomous policy variables, including whether a state later adopted recreational cannabis, as well as time and unit fixed effects and population weights.

Results: For states that adopted a medical cannabis law, there was a significant decrease in the log average total premium per employee for single (-0.034, standard error [SE] 0.009 (-$238)) and employee-plus-one (-0.025, SE 0.009 (-$348)) coverage plans per year considering the first 10 years of policy change compared with states without such laws. Looking at the last 5 years of policy change, we saw increases in effect size and statistical significance. In-time placebo testing suggested model robustness. Under a hypothetical scenario where all 50 states adopted medical cannabis in 2022, we estimated that employers and employees could collectively save billions on healthcare coverage, potentially reducing healthcare expenditure’s contribution to GDP by 0.65% in 2022.

Conclusion: Adoption of a medical cannabis law may contribute to decreases in healthcare costs. This phenomenon is likely a secondary effect and suggests positive externalities outside of medical cannabis patients.”

https://pubmed.ncbi.nlm.nih.gov/39287774/

Phytochemistry and pharmacological activities of Cannabis sativa fruit (Cannabis Fructus)

pubmed logo

“Cannabis sativa fruit (Cannabis Fructus) refers to the dried and ripe fruit of Cannabis sativa L. It is widely distributed in the northeast, North, and South China. It has medicinal, ecological, and economic values.

This study aimed to review the chemical constituents and pharmacological activities of Cannabis Fructus, providing a reference for further exploration of Cannabis Fructus. Comprehensive information on Cannabis Fructus was collected via electronic searches (e.g., Google Scholar, PubMed, Sci Finder, and Web of Science) and from books on phytochemistry.

Cannabis Fructus contains various compounds such as phenylpropanoids, flavonoids, steroids and terpenoids, cannabinoids, fatty acids, alkaloids, phenanthrenes, proteins, and polysaccharides. Its active ingredients exhibit anti-inflammatory, anti-oxidant, anti-bacterial, anti-aging, anti-fatigue, anti-tumor, anti-constipation, neuroprotective, lipoid-regulating, hepatoprotective, and immunomodulatory properties.”

https://pubmed.ncbi.nlm.nih.gov/39278423/

“Highlights

  • •Cannabis Fructus is the dried and ripe fruit of Cannabis sativa L, it has a long history of medicinal and edible use.
  • •Compounds in Cannabis Fructus include phenylpropanoids, flavonoids, steroids and terpenoids, cannabinoids, fatty acids, alkaloids, phenanthrenes, proteins and polysaccharides.
  • •Cannabis Fructus and its active ingredients have anti-inflammatory, antioxidant, antibacterial, anti-aging, anti-fatigue, anti-tumor, anti-constipation, neuroprotection, lipoid-regulating and liver-protecting activities and immunomodulatory activities.
  • •Cannabis Fructus can be used as the main raw material in the development of food, medicine, cosmetics, health products industry.”

https://www.sciencedirect.com/science/article/abs/pii/S0367326X24003976?via%3Dihub

Cannabinol modulates the endocannabinoid system and shows TRPV1-mediated anti-inflammatory properties in human keratinocytes

pubmed logo

“Cannabinol (CBN) is a secondary metabolite of cannabis whose beneficial activity on inflammatory diseases of human skin has attracted increasing attention. Here, we sought to investigate the possible modulation by CBN of the major elements of the endocannabinoid system (ECS), in both normal and lipopolysaccharide-inflamed human keratinocytes (HaCaT cells).

CBN was found to increase the expression of cannabinoid receptor 1 (CB1) at gene level and that of vanilloid receptor 1 (TRPV1) at protein level, as well as their functional activity. In addition, CBN modulated the metabolism of anandamide (AEA) and 2-arachidonoylglicerol (2-AG), by increasing the activities of N-acyl phosphatidylethanolamines-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH)-the biosynthetic and degradative enzyme of AEA-and that of monoacylglycerol lipase (MAGL), the hydrolytic enzyme of 2-AG.

CBN also affected keratinocyte inflammation by reducing the release of pro-inflammatory interleukin (IL)-8, IL-12, and IL-31 and increasing the release of anti-inflammatory IL-10. Of note, the release of IL-31 was mediated by TRPV1. Finally, the mitogen-activated protein kinases (MAPK) signaling pathway was investigated in inflamed keratinocytes, demonstrating a specific modulation of glycogen synthase kinase 3β (GSK3β) upon treatment with CBN, in the presence or not of distinct ECS-directed drugs.

Overall, these results demonstrate that CBN modulates distinct ECS elements and exerts anti-inflammatory effects-remarkably via TRPV1-in human keratinocytes, thus holding potential for both therapeutic and cosmetic purposes.”

https://pubmed.ncbi.nlm.nih.gov/39275884/

“Taken together, our data suggest that CBN may hold true therapeutic potential to treat different human skin diseases. Such a biological activity of CBN occurs through engagement of selected elements of the endocannabinoid system—in particular TRPV1—a finding that paves the way to the development of distinct formulations of cannabis extracts for selected therapeutic applications.”

https://iubmb.onlinelibrary.wiley.com/doi/10.1002/biof.2122

Design, Synthesis, and Characterization of Novel Cannabidiol-Based Derivatives with Potent Antioxidant Activities

pubmed logo

“In recent years, extensive research has focused on cannabidiol (CBD), a well-studied non-psychoactive component of the plant-derived cannabinoids. CBD has shown significant therapeutic potential for treating various diseases and disorders, including antioxidants and anti-inflammatory effects. Due to the promising therapeutic effect of CBD in a wide variety of diseases, synthetic derivatization of this compound has attracted the attention of drug discovery in both industry and academia.

In the current research, we focused on the derivatization of CBD by introducing Schiff base moieties, particularly (thio)-semicarbazide and aminoguanidine motifs, at the 3-position of the olivetolic ring. We have designed, synthesized, and characterized new derivatives based on CBD’s framework, specifically aminoguanylhydrazone- and (thio)-semicarbazones-CBD-aldehyde compounds. Their antioxidant potential was assessed using FRAP and DPPH assays, alongside an evaluation of their effect on LDL oxidation induced by Cu2+ and AAPH. Our findings suggest that incorporating the thiosemicarbazide motif into the CBD framework produces a potent antioxidant, warranting further investigation.”

https://pubmed.ncbi.nlm.nih.gov/39273525/

https://www.mdpi.com/1422-0067/25/17/9579

Changes in health-related quality of life over the first three months of medical marijuana use

pubmed logo

“Background: The psychosocial impact of medical marijuana use is not yet known. This study evaluated short-term changes in health-related quality of life (HRQoL) over the first three months of medical marijuana use.

Methods: This prospective, observational, longitudinal study followed adults newly recommended for medical marijuana by a physician for any of the more than 20 qualifying medical conditions in Pennsylvania. Participants (N = 438) provided their clinical status and demographic information, and completed semi-structured interviews prior to medical marijuana initiation (baseline) and at three months. HRQoL was assessed by the Short Form-36 (SF-36). Paired-samples t-tests evaluated changes in HRQoL over time.

Results: Participants (M age = 46.4 years [15.6]; 66.4% female) were mostly commonly referred for medical marijuana to treat anxiety disorders (61.9%) or severe chronic or intractable pain (53.6%). Participants reported rapid and significant improvements in all of the domains of HRQoL from baseline to three months after initiating medical marijuana use (physical functioning, role limitations due to physical health problems, emotional well-being, role limitations due to emotional problems, bodily pain, social functioning, energy/fatigue and general health, P < .001 for all). Age was negatively predictive of level of improvement over time for the physical functioning (P < .0001), role limitations due to physical health problems (P < .001), and pain (P < .0001) domains after controlling for baseline, with older participants displaying less improvement than younger participants.

Conclusions: Gains were observed in all HRQoL domains assessed after three months of medical marijuana use. In several domains, age was a significant predictor of degree of improvement.”

https://pubmed.ncbi.nlm.nih.gov/39256884/

“In conclusion, the use of medical marijuana for three months was associated with improvements in physical, social, emotional and pain-related HRQoL. Ongoing surveillance of HRQoL in individuals with physical and mental health conditions can help to treat the “whole person” and to capture any collateral impact of selected therapeutic approaches as treatment initiates and progresses. Results from this study can help patients, their caregivers, and their providers to make more informed and evidence-based decisions on whether to incorporate medical marijuana into their treatment regimens.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-024-00245-9

The neurobehavioural effects of cannabidiol in alcohol use disorder: Study protocol for a double-blind, randomised, cross over, placebo-controlled trial

pubmed logo

“Current treatments for alcohol use disorders (AUD) have limited efficacy. Recently, Cannabidiol (CBD) has been examined in a multitude of clinical settings. Preclinical and clinical results suggest that CBD might be particularly well suited for the treatment of AUD and may reduce alcohol cue and stress-induced craving and alcohol seeking. This study aims to investigate this new pharmacotherapy with a particular focus on neurobiological and physiological indicators of craving.

Methods: In this double-blind, within-subject, randomised, placebo-controlled, cross-over study, non-treatment seekers will be randomly allocated to three days of four 200 mg CBD gel capsules (800 mg/day) or placebo, with an 18-day washout period. Cognitive, clinical, and neuroimaging assessments will be completed during these three days. The CBD and placebo assessments will be compared.

The primary outcomes are i) BOLD signal as a proxy for regional activity during a cue reactivity and a fear response task measured with functional magnetic resonance imaging (fMRI), ii) heart rate variability and skin conductance levels as a proxy for psychophysiological responses to alcohol stimuli. The secondary outcomes are: i) neurometabolite levels (γ-Aminobutyric acid, ethanol, glutathione, and glutamate + glutamine (combined signal)) using magnetic resonance spectroscopy (MRS); ii) functional connectivity using resting state fMRI (rsfMRI); iii) executive functioning task results; iv) clinical outcomes such as craving, anxiety, and sleep. 

Discussion: This study will improve the understanding of the mechanisms of action of CBD and provide early signals of efficacy regarding the therapeutic potential of CBD in the treatment of alcohol use disorder.”

https://pubmed.ncbi.nlm.nih.gov/39252861/

“CBD could reduce alcohol craving and seeking due to moderating responses to alcohol and stress cues, normalising dysregulated neurobiological systems and/or improving relevant clinical characteristics that lead to relapse such as sleep and mood disturbances. Compared to other medications used for the management of addiction, CBD has been demonstrated to be particularly safe with less severe side effects and few contraindications which may lead to better treatment adherence. CBD may also offer potential protection from alcohol-related liver and brain damage due to anti-inflammatory and antioxidant properties. “

https://www.sciencedirect.com/science/article/pii/S2451865424000887?via%3Dihub