Hemp Seed Cake Flour as a Source of Proteins, Minerals and Polyphenols and Its Impact on the Nutritional, Sensorial and Technological Quality of Bread

pubmed logo

“Hemp (Cannabis sativa L.) seeds contain a high concentration of proteins and biologically active compounds. The protein content is even higher in case of lipid part removal in oil production. The remaining part is considered a leftover, usually being used in animal feed. The aim of this study was to investigate the physicochemical composition of hemp seed cake flour, its nutritional quality and its impact on bread quality parameters. The properties of hemp seed cake flour were assessed in terms of protein quality, mineral composition, polyphenols and antioxidant activity.

Hemp seed cake proved to be an important source of high-quality protein (31.62% d.m.) with the presence of eight essential amino acids.

The biologically active potential of hemp seed cake has been demonstrated by the high content of polyphenols, especially those from the Cannabisin group. Hemp seed cake flour was incorporated in wheat flour at levels from 5 to 40% (w/w) to investigate its influence on bread quality parameters.

The addition of hemp seed cake flour increased the total phenol content of bread, thus greatly enhancing the antioxidant activity. The protein content of bread was found to be enhanced from 11.11% d.m (control sample) to 18.18% d.m (for sample with 40% hemp seed cake flour). On the other hand, the addition of hemp seed cake flour led to decreased bread porosity, increased hardness and decreased resilience in the seed cake. Although, all bread samples recorded sensorial attributes ranging between “slightly like” and “like it very much”.”

https://pubmed.ncbi.nlm.nih.gov/38231840/

“Hemp (Cannabis sativa L.) is a low-cost, unconventional feed resource with a unique phytochemical composition and various uses (pharmaceutical industry, food industry, etc)”

https://www.mdpi.com/2304-8158/12/23/4327

Review: Nutritional aspects of hemp-based products and their effects on health and performance of monogastric animals

pubmed logo

“Sustainable agriculture aims to produce food and feed that ensure food security and play a key role in environmental protection. For this, producers, supported by scientific research, are investigating new protein alternatives for animals that guarantee high performance and preserve their health.

Among these, hemp (Cannabis sativa L.) is gaining great success, both for its active role in environmental conservation and for the high nutritional profile of the seeds (20-30% carbohydrates, 25-30% proteins easy to digest and rich in essential amino acids, and 25-35% lipids with a balanced fatty acid composition), also ensured by the co-products, particularly seed cakes (30-34% proteins and 10-12% lipids).

However, the last scientific report by the European Food Safety Authority for the use of hemp-based products in the feed sector now dates back to 2011. For this reason, the objective of this review, in addition to outlining the nutritional profile of hempseeds (HSs) and co-products, aims to investigate their use in the monogastric sector, particularly in the diets of pigs, broilers, and laying hens, by summarising the main works in the literature up to 2023, investigating the effects on animal health and performances.

The reported results showed that the addition of 50 g/kg of HSs and HS oil improved the nutritional profile of milk and colostrum in lactating sows, particularly the lipid profile, positively affecting the health of piglets. For broilers, the inclusion of HSs (20 g/kg) resulted in better values on growth performance. This was not matched by the addition of HS oil (up to 60 g/kg). In particular, although a better polyunsaturated fatty acid profile was observed, the results on growth performance were contradictory. The same trend was observed for HSs cakes with 50, 150, and 200 g/kg inclusion. For laying hens, the inclusion of HSs (up to 250 g/kg), HS oil (up to 300 g/kg), and HSs cake (up to 150 g/kg) increased the nutritional and functional profile of the eggs, safeguarding performance and animal welfare. However, despite the promising results, the function of hemp-based products in the diet of monogastric animals needs to be further investigated to identify the optimal level of inclusion and timing of administration, necessary to ensure high performance and health of the animals.”

https://pubmed.ncbi.nlm.nih.gov/38211413/

“Hempseeds and hemp-based products are characterised by a high nutritional aspect.”

https://www.sciencedirect.com/science/article/pii/S1751731123003750?via%3Dihub

The NLRP3 inflammasome: a vital player in inflammation and mediating the anti-inflammatory effect of CBD

pubmed logo

“Background: The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear.

Methods: We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science.

Results and conclusions: In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.”

https://pubmed.ncbi.nlm.nih.gov/38191853/

https://link.springer.com/article/10.1007/s00011-023-01831-y

Sila-CBD Derivatives as Inhibitors of Heme-Induced NLRP3 Inflammasome: Application in Hemolytic Diseases

pubmed logo

“Synthesis and biological evaluation of silicon-incorporated phytocannabinoids with improved pharmacological properties toward inflammatory diseases are described. The synthesized sila-analogues 15a15b, and 15c displayed potent inhibition of pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6 at 10 μM. Further, the release of heme during the lysis of red blood cells in hemolytic diseases is one of the major reasons for inflammation associated with the pathophysiology of these diseases. Due to scanty literature related to inhibitors of heme-mediated induction of the NLRP3 inflammasome, we decided to test these compounds against it. Compounds 15a and 15c significantly inhibited the heme-mediated induction of the NLRP3 inflammasome at a concentration of 0.1 μM. Interestingly, the sila-CBD derivatives also showed higher metabolic stability in contrast to their carbon analogues. Anti-NLRP3 inflammasome activity of compounds 15a and 15c were further validated in vivo against heme-mediated peritoneal inflammation. The anti-inflammatory activity of these compounds could be useful in treating diseases such as sickle cell anemia and thalassemia involving the hemolysis-mediated activation of the NLRP3 inflammasome.”

https://pubmed.ncbi.nlm.nih.gov/38116428/

https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00352

Cannabinoids improve mitochondrial function in skeletal muscle of exhaustive exercise training rats by inhibiting mitophagy through the Pink1/Parkin and Bnip3 pathways

pubmed logo

“Cannabidiol (CBD) is a pure natural phytocannabinoid derived from cannabis that has anti-inflammatory, antiapoptotic and antioxidative stress abilities. In recent years, an increasing number of studies have reported the regulatory effect of CBD on skeletal muscle injury induced by exercise, but its mechanism is still unclear. Mitochondria are the main organelles responsible for the energy supply within eukaryotic cells, and their function has been closely linked to cellular health. Moderate exercise improves mitochondrial function, but the excessive exercise has a negative impact on mitochondria. Therefore, we speculate that CBD may promote exercise induced skeletal muscle cell damage by improving mitochondrial function. In this study, by establishing an animal model of exhaustive exercise training in rats, the effects of CBD on the protective effect of CBD on skeletal muscle mitochondrial structure and function was elaborated, and the possible molecular mechanism was discussed based on transcriptomics. Our results indicate that skeletal muscle mitochondrial structure and function were improved after CBD intervention. GO and KEGG pathway enrichment analysis showed that exhaustive exercise training induced mitochondrial dysfunction in skeletal muscle is associated with excessive autophagy/mitophagy, the signaling pathways involved in FOXO3 and GABARAPL1 may play important roles. After CBD intervention, the protein expression of Pink1, Parkin and Bnip3 was down-regulated, indicating that CBD may improve the mitochondrial function by inhibiting mitophagy through the Pink1/Parkin and Bnip3 pathway.”

https://pubmed.ncbi.nlm.nih.gov/38182033/

https://www.sciencedirect.com/science/article/abs/pii/S0009279724000012?via%3Dihub

Cannabidiol Mediates In Vitro Attenuation of Proinflammatory Cytokine Responses in Psoriatic Disease

pubmed logo

“Background: Cannabidiol (CBD), a substance that belongs to the phytocannabinoids, appears to exert antioxidant, neuroprotective, antipsychotic, anticonvulsant, and anticancer properties. Recent evidence supports the immunoregulatory effect of CBD on autoimmune and/or inflammatory disease. Psoriasis is a chronic skin disease. The main immune cell population involved in the pathogenesis of the disease is the interleukin- (IL-) 17-producing T helper (Th) 17 subset. Other subpopulations, such as interferon-γ (IFNγ) -producing Th1 and T cytotoxic (Tc) 1, IL-17-producing Tc17, as well as natural killer (NK) and natural killer T cells (NKT) have been implicated in psoriasis development. 

Purpose: The aim of the present study was to evaluate the in vitro effect of CBD on the aforementioned subpopulations isolated from patients with psoriasis using flow cytometry. 

Methods: Cells were stimulated in the presence or absence of CBD, stained and examined using surface and intracellular markers. 

Results: CBD decreased IL-17 production within the CD3, Th, and NKT cell compartments and IFNγ production within the CD3 compartment in cells isolated from patients with psoriasis. Interestingly, CBD supplementation did not inhibit production of proinflammatory cytokines in cells isolated from healthy individuals. On the contrary, IFNγ-producing Th, Tc, and NK cells increased after CBD supplementation. 

Conclusion: CBD provides anti-inflammatory effects in T cells isolated from patients with psoriasis. Our results could be the impetus for future investigations regarding the immunomodulatory properties of CBD and its utilization for development of CBD-containing antipsoriatic agents.”

https://pubmed.ncbi.nlm.nih.gov/38181167/

Cannabis Sativa targets mediobasal hypothalamic neurons to stimulate appetite

pubmed logo

“The neurobiological mechanisms that regulate the appetite-stimulatory properties of cannabis sativa are unresolved. This work examined the hypothesis that cannabinoid-1 receptor (CB1R) expressing neurons in the mediobasal hypothalamus (MBH) regulate increased appetite following cannabis vapor inhalation. Here we utilized a paradigm where vaporized cannabis plant matter was administered passively to rodents. Initial studies in rats characterized meal patterns and operant responding for palatable food following exposure to air or vapor cannabis. Studies conducted in mice used a combination of in vivo optical imaging, electrophysiology and chemogenetic manipulations to determine the importance of MBH neurons for cannabis-induced feeding behavior. Our data indicate that cannabis vapor increased meal frequency and food seeking behavior without altering locomotor activity. Importantly, we observed augmented MBH activity within distinct neuronal populations when mice anticipated or consumed food. Mechanistic experiments demonstrated that pharmacological activation of CB1R attenuated inhibitory synaptic tone onto hunger promoting Agouti Related Peptide (AgRP) neurons within the MBH. Lastly, chemogenetic inhibition of AgRP neurons attenuated the appetite promoting effects of cannabis vapor. Based on these results, we conclude that MBH neurons contribute to the appetite stimulatory properties of inhaled cannabis.”

https://pubmed.ncbi.nlm.nih.gov/38151493/

https://www.nature.com/articles/s41598-023-50112-5

Hemp-Derived CBD Used in Food and Food Supplements

pubmed logo

“Cannabis sativa L., a plant historically utilized for textile fibers, oil, and animal feed, is progressively being recognized as a potential food source. This review elucidates the nutritional and functional attributes of hemp and cannabidiol (CBD) within the context of food science. Hemp is characterized by the presence of approximately 545 secondary metabolites, among which around 144 are bioactive cannabinoids of primary importance. The study looks in detail at the nutritional components of cannabis and the potential health benefits of CBD, encompassing anti-inflammatory, anxiolytic, and antipsychotic effects. The review deals with the legislation and potential applications of hemp in the food industry and with the future directions of cannabis applications as well. The paper emphasizes the need for more scientific investigation to validate the safety and efficacy of hemp components in food products, as current research suggests that CBD may have great benefits for a wide range of consumers.”

https://pubmed.ncbi.nlm.nih.gov/38138537/

https://www.mdpi.com/1420-3049/28/24/8047

Cannabis Science and Therapeutics: An Overview for Clinicians

pubmed logo

“Cannabis-based therapeutics have garnered increasing attention in recent years as patients seek alternative treatments for various medical conditions. This narrative review provides a comprehensive overview of the science behind the medical use of cannabis, focusing on the medical evidence for commonly treated conditions. In addition, the review addresses the practical considerations of using cannabis as a therapeutic agent, offering insights into dosing strategies, variations in cannabinoid formulation, and individual patient responses. Precautions, adverse consequences, and drug interactions are also discussed, with a focus on patient safety and the potential risks associated with cannabis use.”

https://pubmed.ncbi.nlm.nih.gov/38145388/

https://accp1.onlinelibrary.wiley.com/doi/10.1002/jcph.2400

The Basic Science of Cannabinoids

pubmed logo

“The cannabis plant has been used for centuries to manage the symptoms of various ailments including pain.

Hundreds of chemical compounds have been identified and isolated from the plant and elicit a variety of physiological responses by binding to specific receptors and interacting with numerous other proteins.

In addition, the body makes its own cannabinoid-like compounds that are integrally involved in modulating normal and pathophysiological processes.

As the legal cannabis landscape continues to evolve within the United States and throughout the world, it is important to understand the rich science behind the effects of the plant and the implications for providers and patients.

This narrative review aims to provide an overview of the basic science of the cannabinoids by describing the discovery and function of the endocannabinoid system, pharmacology of cannabinoids, and areas for future research and therapeutic development as they relate to perioperative and chronic pain medicine.”

https://pubmed.ncbi.nlm.nih.gov/38100799/

https://journals.lww.com/anesthesia-analgesia/fulltext/2024/01000/the_basic_science_of_cannabinoids.6.aspx